【題目】冶煉某種金屬可以用舊設(shè)備和改造后的新設(shè)備,為了檢驗(yàn)用這兩種設(shè)備生產(chǎn)的產(chǎn)品中所含雜質(zhì)的關(guān)系,調(diào)查結(jié)果如下表所示:
分類(lèi) | 雜質(zhì)高 | 雜質(zhì)低 |
舊設(shè)備 | 37 | 121 |
新設(shè)備 | 22 | 202 |
根據(jù)以上數(shù)據(jù),則( )
A. 含雜質(zhì)的高低與設(shè)備改造有關(guān)
B. 含雜質(zhì)的高低與設(shè)備改造無(wú)關(guān)
C. 設(shè)備是否改造決定含雜質(zhì)的高低
D. 以上答案都不對(duì)
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在正方體ABCD﹣A1B1C1D1中,E為DD1的中點(diǎn).求證:
(1)BD1∥平面EAC;
(2)平面EAC⊥平面AB1C.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù)f(x)是定義在R上的偶函數(shù),且對(duì)任意的x∈R恒有f(x+1)=f(x﹣1),已知當(dāng)x∈[0,1]時(shí),f(x)=( )1﹣x , 則
①2是函數(shù)f(x)的一個(gè)周期;
②函數(shù)f(x)在(1,2)上是減函數(shù),在(2,3)上是增函數(shù);
③函數(shù)f(x)的最大值是1,最小值是0;
④x=1是函數(shù)f(x)的一個(gè)對(duì)稱(chēng)軸;
⑤當(dāng)x∈(3,4)時(shí),f(x)=( )x﹣3 .
其中所有正確命題的序號(hào)是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=1﹣ ﹣lnx(a∈R).
(1)當(dāng)a=1時(shí),求函數(shù)f(x)的圖象在點(diǎn)( ,f( ))處的切線方程;
(2)當(dāng)a≥0時(shí),記函數(shù)Γ(x)= ax2+(1﹣2a)x+ ﹣1+f(x),試求Γ(x)的單調(diào)遞減區(qū)間;
(3)設(shè)函數(shù)h(a)=3λa﹣2a2(其中λ為常數(shù)),若函數(shù)f(x)在區(qū)間(0,2)上不存在極值,求h(a)的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】過(guò)兩點(diǎn)A(1,0),B(2,1),且圓心在直線x﹣y=0上的圓的標(biāo)準(zhǔn)方程是
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某農(nóng)科所對(duì)冬季晝夜溫差大小與某反季節(jié)大豆新品種發(fā)芽多少之間的關(guān)系進(jìn)行分析研究,12月1日至12月5日的晝夜溫差與實(shí)驗(yàn)室每天每100顆種子中的發(fā)芽數(shù)如下表所示:
日期 | 12月1日 | 12月2日 | 12月3日 | 12月4日 | 12月5日 |
溫差x(℃) | 10 | 11 | 13 | 12 | 8 |
發(fā)芽數(shù)y(顆) | 23 | 25 | 30 | 26 | 16 |
該農(nóng)科所確定的研究方案是:先從這5組數(shù)據(jù)中選取2組,用剩下的3組數(shù)據(jù)求回歸方程,再用被選取的2組數(shù)據(jù)進(jìn)行檢驗(yàn).
(1)求選取的2組數(shù)據(jù)恰好是不相鄰的2組數(shù)據(jù)的概率.
(2)若選取的是12月1日與12月5日的兩組數(shù)據(jù),請(qǐng)根據(jù)12月2日至12月4日的數(shù)據(jù),求y關(guān)于x的線性回歸方程.
(3)若由線性回歸方程得到的估計(jì)數(shù)據(jù)與所選出的檢驗(yàn)數(shù)據(jù)的誤差不超過(guò)2顆,則認(rèn)為得到的線性回歸方程是可靠的,試問(wèn)(2)中所得的線性回歸方程是否可靠?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,江的兩岸可近似的看成兩平行的直線,江岸的一側(cè)有A,B兩個(gè)蔬菜基地,江的另一側(cè)點(diǎn)C處有一個(gè)超市.已知A、B、C中任意兩點(diǎn)間的距離為20千米.超市欲在AB之間建一個(gè)運(yùn)輸中轉(zhuǎn)站D,A,B兩處的蔬菜運(yùn)抵D處后,再統(tǒng)一經(jīng)過(guò)貨輪運(yùn)抵C處.由于A,B兩處蔬菜的差異,這兩處的運(yùn)輸費(fèi)用也不同.如果從A處出發(fā)的運(yùn)輸費(fèi)為每千米2元,從B處出發(fā)的運(yùn)輸費(fèi)為每千米1元,貨輪的運(yùn)輸費(fèi)為每千米3元.
(1)設(shè)∠ADC=α,試將運(yùn)輸總費(fèi)用S(單位:元)表示為α的函數(shù)S(α),并寫(xiě)出自變量的取值范圍;
(2)問(wèn)中轉(zhuǎn)站D建在何處時(shí),運(yùn)輸總費(fèi)用S最小?并求出最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐P﹣ABCD中,PC⊥平面PAD,AB∥CD,CD=2AB=2BC,M,N分別是棱PA,CD的中點(diǎn).
(1)求證:PC∥平面BMN;
(2)求證:平面BMN⊥平面PAC.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com