【題目】已知三棱錐的四個(gè)頂點(diǎn)在球的球面上,,是邊長(zhǎng)為正三角形,分別是的中點(diǎn),,則球的體積為_________________。
【答案】
【解析】
由已知設(shè)出,,,分別在中和在中運(yùn)用余弦定理表示,得到關(guān)于x與y的關(guān)系式,再在中運(yùn)用勾股定理得到關(guān)于x與y的又一關(guān)系式,聯(lián)立可解得x,y,從而分析出正三棱錐是,,兩兩垂直的正三棱錐,所以三棱錐的外接球就是以為棱的正方體的外接球,再通過(guò)正方體的外接球的直徑等于正方體的體對(duì)角線的長(zhǎng)求出球的半徑,再求出球的體積.
在中,設(shè),,,,,
因?yàn)辄c(diǎn),點(diǎn)分別是,的中點(diǎn),所以,,
在中,,在中,,
整理得,
因?yàn)?/span>是邊長(zhǎng)為的正三角形,所以,
又因?yàn)?/span>,所以,由,解得,
所以。
又因?yàn)?/span>是邊長(zhǎng)為的正三角形,所以,所以,
所以,,兩兩垂直,
則球為以為棱的正方體的外接球,
則外接球直徑為,
所以球的體積為,
故答案為:.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)且,則“函數(shù)在上是減函數(shù)”是“函數(shù)在上是增函數(shù)”的( )條件.
A. 充分不必要 B. 必要不充分 C. 充要 D. 既不充分也不必要
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在九章算術(shù)中,將底面為長(zhǎng)方形且有一條側(cè)棱與底面垂直的四棱錐稱之為陽(yáng)馬如圖,已知四棱錐為陽(yáng)馬,且,底面若E是線段AB上的點(diǎn)含端點(diǎn),設(shè)SE與AD所成的角為,SE與底面ABCD所成的角為,二面角的平面角為,則
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線C:的焦點(diǎn)為F,M是拋物線C上位于第一象限內(nèi)的任意一點(diǎn),O為坐標(biāo)原點(diǎn),記經(jīng)過(guò)M,F,O三點(diǎn)的圓的圓心為Q,且點(diǎn)Q到拋物線C的準(zhǔn)線的距離為.
Ⅰ求點(diǎn)Q的縱坐標(biāo);可用p表示
Ⅱ求拋物線C的方程;
Ⅲ設(shè)直線l:與拋物線C有兩個(gè)不同的交點(diǎn)A,若點(diǎn)M的橫坐標(biāo)為2,且的面積為,求直線l的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知,設(shè):實(shí)數(shù)滿足 ,:實(shí)數(shù)滿足.
(1)若,且為真,求實(shí)數(shù)的取值范圍;
(2)若是的必要不充分條件,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】關(guān)于函數(shù),有下列命題:①當(dāng)時(shí),是增函數(shù);當(dāng)時(shí),是減函數(shù);②其圖象關(guān)于軸對(duì)稱;③無(wú)最大值,也無(wú)最小值;④在區(qū)間上是增函數(shù);⑤的最小值是。其中所有不正確命題的序號(hào)是________
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某地區(qū)經(jīng)過(guò)一年的新農(nóng)村建設(shè),農(nóng)村的經(jīng)濟(jì)收入增加了一倍.實(shí)現(xiàn)翻番.為更好地了解該地區(qū)農(nóng)村的經(jīng)濟(jì)收入變化情況,統(tǒng)計(jì)了該地區(qū)新農(nóng)村建設(shè)前后農(nóng)村的經(jīng)濟(jì)收入構(gòu)成比例.得到如下餅圖:
則下面結(jié)論中不正確的是
A. 新農(nóng)村建設(shè)后,種植收入減少
B. 新農(nóng)村建設(shè)后,其他收入增加了一倍以上
C. 新農(nóng)村建設(shè)后,養(yǎng)殖收入增加了一倍
D. 新農(nóng)村建設(shè)后,養(yǎng)殖收入與第三產(chǎn)業(yè)收入的總和超過(guò)了經(jīng)濟(jì)收入的一半
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在“新零售”模式的背景下,某大型零售公司咪推廣線下分店,計(jì)劃在市的區(qū)開(kāi)設(shè)分店,為了確定在該區(qū)開(kāi)設(shè)分店的個(gè)數(shù),該公司對(duì)該市已開(kāi)設(shè)分店聽(tīng)其他區(qū)的數(shù)據(jù)作了初步處理后得到下列表格.記表示在各區(qū)開(kāi)設(shè)分店的個(gè)數(shù), 表示這個(gè)個(gè)分店的年收入之和.
(個(gè)) | 2 | 3 | 4 | 5 | 6 |
(百萬(wàn)元) | 2.5 | 3 | 4 | 4.5 | 6 |
(1)該公司已經(jīng)過(guò)初步判斷,可用線性回歸模型擬合與的關(guān)系,求關(guān)于的線性回歸方程;
(2)假設(shè)該公司在區(qū)獲得的總年利潤(rùn)(單位:百萬(wàn)元)與之間的關(guān)系為,請(qǐng)結(jié)合(1)中的線性回歸方程,估算該公司應(yīng)在區(qū)開(kāi)設(shè)多少個(gè)分時(shí),才能使區(qū)平均每個(gè)分店的年利潤(rùn)最大?
(參考公式: ,其中)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】(題文)如圖,在五面體ABCDEF中,四邊形EDCF是正方形,.
(1)證明:;
(2)已知四邊形ABCD是等腰梯形,且,求五面體ABCDEF的體積.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com