【題目】關(guān)于函數(shù),有下列命題:①當(dāng)時(shí),是增函數(shù);當(dāng)時(shí),是減函數(shù);②其圖象關(guān)于軸對(duì)稱(chēng);③無(wú)最大值,也無(wú)最小值;④在區(qū)間上是增函數(shù);⑤的最小值是。其中所有不正確命題的序號(hào)是________

【答案】①③

【解析】

由已知函數(shù)解析式可得為偶函數(shù),即關(guān)于軸對(duì)稱(chēng),當(dāng)時(shí),,由對(duì)勾函數(shù)的性質(zhì)及復(fù)合函數(shù)的單調(diào)性,可得時(shí),為增函數(shù),時(shí)為減函數(shù),即可判斷所給命題的真假.

解:函數(shù)的定義域,函數(shù),

所以為偶函數(shù),關(guān)于軸對(duì)稱(chēng),

所以②正確;

時(shí),,

由對(duì)勾函數(shù)的性質(zhì)及復(fù)合函數(shù)的單調(diào)性可得時(shí),為增函數(shù),時(shí)為減函數(shù),所以①不正確;

因?yàn)?/span>是偶函數(shù),當(dāng),,

所以函數(shù)有最小值,無(wú)最大值,③不正確,⑤正確;

由以上分析可得④正確.

綜上不正確命題的序號(hào)是:①③.

故答案為:①③.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知定義在實(shí)數(shù)集上的偶函數(shù)和奇函數(shù)滿(mǎn)足.

1)求的解析式;

2)求證:在區(qū)間上單調(diào)遞增;并求在區(qū)間的反函數(shù);

3)設(shè)(其中為常數(shù)),若對(duì)于恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)數(shù)列滿(mǎn)足,,,.s

1)證明:數(shù)列是等差數(shù)列,并求數(shù)列的通項(xiàng);

2)求數(shù)列的通項(xiàng),并求數(shù)列的前項(xiàng)和;

3)若,且是單調(diào)遞增數(shù)列,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,為橢圓的下頂點(diǎn).過(guò)的直線(xiàn)交拋物線(xiàn)兩點(diǎn),的中點(diǎn).

(1)求證:點(diǎn)的縱坐標(biāo)是定值;

(2)過(guò)點(diǎn)作與直線(xiàn)傾斜角互補(bǔ)的直線(xiàn)交橢圓于,兩點(diǎn).求的值,使得的面積最大.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知三棱錐的四個(gè)頂點(diǎn)在球的球面上,,是邊長(zhǎng)為正三角形,分別是的中點(diǎn),,則球的體積為_________________。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)fx)的定義域?yàn)椋?/span>﹣∞00,+∞),fx)是奇函數(shù),且當(dāng)x0時(shí),fx=x2﹣x+a,若函數(shù)gx=fx﹣x的零點(diǎn)恰有兩個(gè),則實(shí)數(shù)a的取值范圍是( )

A.a0B.a≤0C.a≤1D.a≤0a=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某企業(yè)有甲、乙兩條生產(chǎn)線(xiàn)生產(chǎn)同一種產(chǎn)品,為了檢測(cè)兩條生產(chǎn)線(xiàn)產(chǎn)品的質(zhì)量情況,隨機(jī)從兩條生產(chǎn)線(xiàn) 生產(chǎn)的大量產(chǎn)品中各抽取了 40件產(chǎn)品作為樣本,檢測(cè)某一項(xiàng)質(zhì)量指標(biāo)值,得到如圖所示的頻率分布直方圖,若,亦則該產(chǎn)品為示合格產(chǎn)品,若,則該產(chǎn)品為二等品,若,則該產(chǎn)品為一等品.

(1)用樣本估計(jì)總體的思想,從甲、乙兩條生產(chǎn)線(xiàn)中各隨機(jī)抽取一件產(chǎn)品,試估計(jì)這兩件產(chǎn)品中恰好一件為二等品,一件為一等品的概率;

(2)根據(jù)圖1和圖2,對(duì)兩條生產(chǎn)線(xiàn)從樣本的平均值和方差方面進(jìn)行比較,哪一條生產(chǎn)線(xiàn)更好;

(3)從甲生產(chǎn)線(xiàn)的樣本中,滿(mǎn)足質(zhì)量指標(biāo)值的產(chǎn)品中隨機(jī)選出3件,記為指標(biāo)值中的件數(shù),求的分布列和數(shù)學(xué)期望

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】寫(xiě)出下列命題的否定,并判斷所得命題的真假.

1,;

2q:所有的正方形都是矩形;

3,;

4s:至少有一個(gè)實(shí)數(shù),使得

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】公元263年左右,我國(guó)數(shù)學(xué)家劉徽發(fā)現(xiàn)當(dāng)圓內(nèi)接正多邊形的邊數(shù)無(wú)限增加時(shí),多邊形面積可無(wú)限逼近圓的面積,并創(chuàng)立了“割圓術(shù)”,利用“割圓術(shù)”劉徽得到了圓周率精確到小數(shù)點(diǎn)后兩位的近似值3.14,這就是著名的“徽率”.如圖是利用劉徽的“割圓術(shù)”思想設(shè)計(jì)的一個(gè)程序框圖,則輸出n的值為( 。▍⒖紨(shù)據(jù):sin15°=0.2588,sin7.5°=0.1305)

A. 12B. 24C. 48D. 96

查看答案和解析>>

同步練習(xí)冊(cè)答案