【題目】在“新零售”模式的背景下,某大型零售公司咪推廣線(xiàn)下分店,計(jì)劃在市的區(qū)開(kāi)設(shè)分店,為了確定在該區(qū)開(kāi)設(shè)分店的個(gè)數(shù),該公司對(duì)該市已開(kāi)設(shè)分店聽(tīng)其他區(qū)的數(shù)據(jù)作了初步處理后得到下列表格.記表示在各區(qū)開(kāi)設(shè)分店的個(gè)數(shù), 表示這個(gè)個(gè)分店的年收入之和.

(個(gè))

2

3

4

5

6

(百萬(wàn)元)

2.5

3

4

4.5

6

(1)該公司已經(jīng)過(guò)初步判斷,可用線(xiàn)性回歸模型擬合的關(guān)系,求關(guān)于的線(xiàn)性回歸方程

(2)假設(shè)該公司在區(qū)獲得的總年利潤(rùn)(單位:百萬(wàn)元)與之間的關(guān)系為,請(qǐng)結(jié)合(1)中的線(xiàn)性回歸方程,估算該公司應(yīng)在區(qū)開(kāi)設(shè)多少個(gè)分時(shí),才能使區(qū)平均每個(gè)分店的年利潤(rùn)最大?

(參考公式: ,其中

【答案】(1) ;(2) 該公司應(yīng)開(kāi)設(shè)4個(gè)分店時(shí),在該區(qū)的每個(gè)分店的平均利潤(rùn)最大.

【解析】試題分析:

(1)根據(jù)所給數(shù)據(jù),按照公式計(jì)算回歸方程中的系數(shù)即可;

2利用(1)得利潤(rùn)與分店數(shù)之間的估計(jì)值,計(jì)算,由基本不等式可得最大值.

試題解析:

(1)由表中數(shù)據(jù)和參考數(shù)據(jù)得: , ,

,∴

(2)由題意,可知總收入的預(yù)報(bào)值之間的關(guān)系為:

設(shè)該區(qū)每個(gè)分店的平均利潤(rùn)為,則,

的預(yù)報(bào)值之間的關(guān)系為,

則當(dāng)時(shí), 取到最大值,

故該公司應(yīng)開(kāi)設(shè)4個(gè)分店時(shí),在該區(qū)的每個(gè)分店的平均利潤(rùn)最大.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù), =2.718………),

(I) 當(dāng)時(shí),求函數(shù)的單調(diào)區(qū)間;

(II)當(dāng)時(shí),不等式對(duì)任意恒成立,

求實(shí)數(shù)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某同學(xué)用“隨機(jī)模擬方法”計(jì)算曲線(xiàn)與直線(xiàn), 所圍成的曲邊三角形的面積時(shí),用計(jì)算機(jī)分別產(chǎn)生了10個(gè)在區(qū)間上的均勻隨機(jī)數(shù)和10個(gè)區(qū)間上的均勻隨機(jī)數(shù) ),其數(shù)據(jù)如下表的前兩行.

2.50

1.01

1.90

1.22

2.52

2.17

1.89

1.96

1.36

2.22

0.84

0.25

0.98

0.15

0.01

0.60

0.59

0.88

0.84

0.10

0.90

0.01

0.64

0.20

0.92

0.77

0.64

0.67

0.31

0.80

由此可得這個(gè)曲邊三角形面積的一個(gè)近似值是( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),A、B、C三點(diǎn)滿(mǎn)足 = +
(1)求證:A、B、C三點(diǎn)共線(xiàn);
(2)已知A(1,cosx)、B(1+sinx,cosx),x∈[0, ],f(x)= +(2m+ )| |+m2的最小值為5,求實(shí)數(shù)m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù)為常數(shù)),為自然對(duì)數(shù)的底數(shù).

(1)當(dāng)時(shí),求實(shí)數(shù)的取值范圍;

(2)當(dāng)時(shí),求使得成立的最小正整數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:三棱柱中,底面是正三角形,側(cè)棱, 是棱的中點(diǎn),點(diǎn)在棱上,且

)求證: 平面

)求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知二次函數(shù)f(x)=ax2+bx+c.
(1)若f(﹣1)=0,試判斷函數(shù)f(x)零點(diǎn)個(gè)數(shù);
(2)若對(duì)x1x2∈R,且x1<x2 , f(x1)≠f(x2),證明方程f(x)= 必有一個(gè)實(shí)數(shù)根屬于(x1 , x2).
(3)是否存在a,b,c∈R,使f(x)同時(shí)滿(mǎn)足以下條件
①當(dāng)x=﹣1時(shí),函數(shù)f(x)有最小值0;
②對(duì)任意x∈R,都有0≤f(x)﹣x≤ 若存在,求出a,b,c的值,若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓經(jīng)過(guò)點(diǎn)且離心率為

(Ⅰ)求橢圓的方程;

(Ⅱ)設(shè)是橢圓上的點(diǎn),直線(xiàn)為坐標(biāo)原點(diǎn))的斜率之積為.若動(dòng)點(diǎn)滿(mǎn)足,試探究是否存在兩個(gè)定點(diǎn),使得為定值若存在,的坐標(biāo);若不存在請(qǐng)說(shuō)明理由

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在平面直角坐標(biāo)系中,曲線(xiàn)的方程為.以坐標(biāo)原點(diǎn)為極點(diǎn), 軸的非負(fù)半軸為極軸,建立極坐標(biāo)系,曲線(xiàn)的極坐標(biāo)方程為.

(1)寫(xiě)出曲線(xiàn)的參數(shù)方程和曲線(xiàn)的直角坐標(biāo)方程;

(2)設(shè)點(diǎn)在曲線(xiàn)上,點(diǎn)在曲線(xiàn)上,求的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案