【題目】已知橢圓的左、右焦點分別為,,直線)與橢圓交于,兩點(點軸的上方).

1)若,求的面積;

2)是否存在實數(shù)使得以線段為直徑的圓恰好經(jīng)過坐標原點?若存在,求出的值;若不存在,請說明理由.

【答案】(1)(2)存在實數(shù),使得以線段為直徑的圓恰好經(jīng)過坐標原點

【解析】

1)由橢圓方程求得,得,由直線方程與橢圓方程聯(lián)立可解得交點坐標,當然這里只要得出點的縱坐標,即可求得三角形面積;

2)這類問題,都是假設存在實數(shù)使得以線段為直徑的圓恰好經(jīng)過坐標原點,則有.,從而有,把直線方程與橢圓方程聯(lián)立消元后可得,代入,求得值,說明存在,求不出值說明假設錯誤,不存在。

1)設橢圓的半焦距為,因為,,,所以,,

聯(lián)立化簡得,解得,又點軸的上方,所以,所以,

所以的面積為.

2)假設存在實數(shù)使得以線段為直徑的圓恰好經(jīng)過坐標原點,則有.

,,

聯(lián)立消去,(*

,.

,所以,即,

整理得,

所以,解得.

經(jīng)檢驗時(*)中,

所以存在實數(shù),使得以線段為直徑的圓恰好經(jīng)過坐標原點.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列的前項和為,且滿足:

(1)證明:是等比數(shù)列,并求數(shù)列的通項公式.

(2)設,若數(shù)列是等差數(shù)列,求實數(shù)的值;

(3)在(2)的條件下,設 記數(shù)列的前項和為,若對任意的存在實數(shù),使得,求實數(shù)的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某企業(yè)通過調(diào)查問卷(滿分50分)的形式對本企業(yè)900名員工的工作滿意程度進行調(diào)查,并隨機抽取了其中30名員工(16名女工,14名男工)的得分,如下表:

47

36

32

48

34

44

43

47

46

41

43

42

50

43

35

49

37

35

34

43

46

36

38

40

39

32

48

33

40

34

(1)根據(jù)以上數(shù)據(jù),估計該企業(yè)得分大于45分的員工人數(shù);

(2)現(xiàn)用計算器求得這30名員工的平均得分為40.5分,若規(guī)定大于平局得分為 “滿意”,否則為 “不滿意”,請完成下列表格:

“滿意”的人數(shù)

“不滿意”的人數(shù)

合計

女員工

16

男員工

14

合計

30

(3)根據(jù)上述表中數(shù)據(jù),利用獨立性檢驗的方法判斷,能否在犯錯誤的概率不超過1%的前提下,認為該企業(yè)員工“性別”與“工作是否滿意”有關?

參考數(shù)據(jù):

P(K2K)

0.10

0.050

0.025

0.010

0.001

K

2.706

3.841

5.024

6.635

10.828

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】一個盒子里裝有大小均勻的6個小球,其中有紅色球4個,編號分別為12,34;白色球2個,編號分別為4,5,從盒子中任取3個小球(假設取到任何個小球的可能性相同).

1)求取出的3個小球中,含有編號為4的小球的概率;

2)在取出的3個小球中,小球編號的最大值設為,求隨機變量的分布列及數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

1)求函數(shù)的最小正周期及單調(diào)增區(qū)間;

2)當時,求函數(shù)的最大值及最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】IT從業(yè)者繪制了他在26歲~35(2009年~2018)之間各年的月平均收入(單位:千元)的散點圖:

1)由散點圖知,可用回歸模型擬合的關系,試根據(jù)附注提供的有關數(shù)據(jù)建立關于的回歸方程

2)若把月收入不低于2萬元稱為“高收入者”.

試利用(1)的結(jié)果,估計他36歲時能否稱為“高收入者”?能否有95%的把握認為年齡與收入有關系?

附注:①.參考數(shù)據(jù):,,,,,,其中,取,

.參考公式:回歸方程中斜率和截距的最小二乘估計分別為:,

PK2k

0.050

0.010

0.001

k

3.841

6.635

10.828

.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知曲線的焦點是,、是曲線上不同兩點,且存在實數(shù)使得,曲線在點、處的兩條切線相交于點

1)求點的軌跡方程;

2)點軸上,以為直徑的圓與的另一交點恰好是的中點,當時,求四邊形的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

(Ⅰ)求函數(shù)的單調(diào)區(qū)間;

(Ⅱ)當時,證明:對任意的.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】將三棱錐拼接得到如圖所示的多面體,其中,,分別為,,的中點,.

1)當點在直線上時,證明:平面;

2)若均為面積為的等邊三角形,求該多面體體積的最大值.

查看答案和解析>>

同步練習冊答案