【題目】某企業(yè)通過(guò)調(diào)查問(wèn)卷(滿(mǎn)分50分)的形式對(duì)本企業(yè)900名員工的工作滿(mǎn)意程度進(jìn)行調(diào)查,并隨機(jī)抽取了其中30名員工(16名女工,14名男工)的得分,如下表:
女 | 47 | 36 | 32 | 48 | 34 | 44 | 43 | 47 | 46 | 41 | 43 | 42 | 50 | 43 | 35 | 49 |
男 | 37 | 35 | 34 | 43 | 46 | 36 | 38 | 40 | 39 | 32 | 48 | 33 | 40 | 34 |
(1)根據(jù)以上數(shù)據(jù),估計(jì)該企業(yè)得分大于45分的員工人數(shù);
(2)現(xiàn)用計(jì)算器求得這30名員工的平均得分為40.5分,若規(guī)定大于平局得分為 “滿(mǎn)意”,否則為 “不滿(mǎn)意”,請(qǐng)完成下列表格:
“滿(mǎn)意”的人數(shù) | “不滿(mǎn)意”的人數(shù) | 合計(jì) | |
女員工 | 16 | ||
男員工 | 14 | ||
合計(jì) | 30 |
(3)根據(jù)上述表中數(shù)據(jù),利用獨(dú)立性檢驗(yàn)的方法判斷,能否在犯錯(cuò)誤的概率不超過(guò)1%的前提下,認(rèn)為該企業(yè)員工“性別”與“工作是否滿(mǎn)意”有關(guān)?
參考數(shù)據(jù):
P(K2K) | 0.10 | 0.050 | 0.025 | 0.010 | 0.001 |
K | 2.706 | 3.841 | 5.024 | 6.635 | 10.828 |
【答案】(1)240;(2)見(jiàn)解析;(3)見(jiàn)解析
【解析】分析:第一問(wèn)首先從表中查找得分大于45分的人數(shù),求得比值即為概率,應(yīng)用對(duì)應(yīng)的關(guān)系式求得相應(yīng)的人數(shù);第二問(wèn)按照條件,將男女員工對(duì)應(yīng)的分?jǐn)?shù)分析比較,進(jìn)行分類(lèi),從而將相應(yīng)的數(shù)據(jù)填入表中,得到列聯(lián)表;第三問(wèn)利用公式求得觀(guān)測(cè)值,判斷出結(jié)果即可.
詳解:(1)從表中可知,30名員工有8名得分大于45分,所以任選一名員工,他(她)的得分大于45分的概率是,所以估計(jì)此次調(diào)查中,該單位約有名員工的得分大于45分;
(2)依題意,完成列聯(lián)表如下:
“滿(mǎn)意”的人數(shù) | “不滿(mǎn)意”的人數(shù) | 合計(jì) | |
女員工 | 12 | 4 | 16 |
男員工 | 3 | 11 | 14 |
合計(jì) | 15 | 15 | 30 |
(3)假設(shè):性別與工作是否滿(mǎn)意無(wú)關(guān),根據(jù)表中數(shù)據(jù),求得的觀(guān)測(cè)值:
查表得
能在犯錯(cuò)誤的概率不超過(guò)1%的前提下,認(rèn)為性別與工作是否滿(mǎn)意有關(guān).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù)=Asin(A>0,>0,<≤)在處取得最大值2,其圖象與x軸的相鄰兩個(gè)交點(diǎn)的距離為。
(1)求的解析式;
(2)求函數(shù) 的值域。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】函數(shù)f(x)=ln(x+1)﹣ (a>1).
(1)討論f(x)的單調(diào)性;
(2)設(shè)a1=1,an+1=ln(an+1),證明: <an≤ .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)在x=1處取得極值2.
(1)求f(x)的解析式;
(2)設(shè)函數(shù) ,若對(duì)任意的,總存在,使得成立,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下面給出了關(guān)于復(fù)數(shù)的四種類(lèi)比推理:
①?gòu)?fù)數(shù)的加減法運(yùn)算可以類(lèi)比多項(xiàng)式的加減法運(yùn)算法則;
②由向量的性質(zhì),類(lèi)比得到復(fù)數(shù)的性質(zhì);
③方程有兩個(gè)不同實(shí)數(shù)根的條件是可以類(lèi)比得到:方程有兩個(gè)不同復(fù)數(shù)根的條件是;
④由向量加法的幾何意義可以類(lèi)比得到復(fù)數(shù)加法的幾何意義,其中類(lèi)比錯(cuò)誤的是__________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】若函數(shù)和滿(mǎn)足:在區(qū)間上均有定義;函數(shù)在區(qū)間上至少有一個(gè)零點(diǎn),則稱(chēng)和在上具有關(guān)系W.
若,,判斷和在上是否具有關(guān)系W,并說(shuō)明理由;
若和在上具有關(guān)系W,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列有關(guān)線(xiàn)性回歸分析的四個(gè)命題:
①線(xiàn)性回歸直線(xiàn)必過(guò)樣本數(shù)據(jù)的中心點(diǎn)();
②回歸直線(xiàn)就是散點(diǎn)圖中經(jīng)過(guò)樣本數(shù)據(jù)點(diǎn)最多的那條直線(xiàn);
③當(dāng)相關(guān)性系數(shù)時(shí),兩個(gè)變量正相關(guān);
④如果兩個(gè)變量的相關(guān)性越強(qiáng),則相關(guān)性系數(shù)就越接近于.
其中真命題的個(gè)數(shù)為( )
A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC是圓的內(nèi)接三角形,∠BAC的平分線(xiàn)交圓于點(diǎn)D,交BC于E,過(guò)點(diǎn)B的圓的切線(xiàn)與AD的延長(zhǎng)線(xiàn)交于點(diǎn)F,在上述條件下,給出下列四個(gè)結(jié)論:
①BD平分∠CBF;
②FB2=FDFA;
③AECE=BEDE;
④AFBD=ABBF.
所有正確結(jié)論的序號(hào)是( )
A.①②
B.③④
C.①②③
D.①②④
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù),.
(1)當(dāng)時(shí),函數(shù),在處的切線(xiàn)互相垂直,求的值;
(2)當(dāng)函數(shù)在定義域內(nèi)不單調(diào)時(shí),求證:;
(3)是否存在實(shí)數(shù),使得對(duì)任意,都有函數(shù)的圖象在的圖象的下方?若存在,請(qǐng)求出最大整數(shù)的值;若不存在,請(qǐng)說(shuō)理由.(參考數(shù)據(jù):,)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com