【題目】已知數(shù)列的前項(xiàng)和為,且滿足:
(1)證明:是等比數(shù)列,并求數(shù)列的通項(xiàng)公式.
(2)設(shè),若數(shù)列是等差數(shù)列,求實(shí)數(shù)的值;
(3)在(2)的條件下,設(shè) 記數(shù)列的前項(xiàng)和為,若對(duì)任意的存在實(shí)數(shù),使得,求實(shí)數(shù)的最大值.
【答案】(1) 證明過程見解析 (2) (3)
【解析】
(1)由,再得出,兩式作差,得出,,再分奇數(shù)項(xiàng),偶數(shù)項(xiàng)分別求通項(xiàng)公式即可得解;
(2)由等差數(shù)列的等差中項(xiàng)可得恒成立,可得,解得;
(3)由已知有,由裂項(xiàng)求和法求數(shù)列前項(xiàng)和得,由分離變量最值法可得,運(yùn)算即可得解.
解:(1)因?yàn)?/span>,①
所以,②
②-①得:,
由易得,即,
即,,
即數(shù)列的奇數(shù)項(xiàng)是以為首項(xiàng),4為公比的等比數(shù)列,偶數(shù)項(xiàng)是以為首項(xiàng),4為公比的等比數(shù)列,
當(dāng)為奇數(shù)時(shí),,
當(dāng)為偶數(shù)時(shí),,
綜上可得,
又,
故是等比數(shù)列,且數(shù)列的通項(xiàng)公式.
(2)因?yàn)?/span>,
所以,
因?yàn)閿?shù)列是等差數(shù)列,
所以恒成立,
即有恒成立,
即,
解得;
(3)因?yàn)?/span>=,
即,
又對(duì)任意的存在實(shí)數(shù),使得,
即對(duì)任意的 恒成立,
又當(dāng)時(shí),取最小值3,時(shí),,
即,
故實(shí)數(shù)的最大值為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)定義且為常數(shù)),若 , .下述四個(gè)命題:
① 不存在極值;
②若函數(shù) 與函數(shù) 的圖象有兩個(gè)交點(diǎn),則 ;
③若在 上是減函數(shù),則實(shí)數(shù) 的取值范圍是 ;
④若 ,則在的圖象上存在兩點(diǎn),使得在這兩點(diǎn)處的切線互相垂直
A. ①③④B. ②③④C. ②③D. ②④
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{an}為等比數(shù)列,a1=2,公比q>0,且a2,6,a3成等差數(shù)列.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)bn=log2an,,求使的n的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為踐行“綠水青山就是金山銀山”的發(fā)展理念,某城區(qū)對(duì)轄區(qū)內(nèi),,三類行業(yè)共200個(gè)單位的生態(tài)環(huán)境治理成效進(jìn)行了考核評(píng)估,考評(píng)分?jǐn)?shù)達(dá)到80分及其以上的單位被稱為“星級(jí)”環(huán)保單位,未達(dá)到80分的單位被稱為“非星級(jí)”環(huán)保單位.現(xiàn)通過分層抽樣的方法獲得了這三類行業(yè)的20個(gè)單位,其考評(píng)分?jǐn)?shù)如下:
類行業(yè):85,82,77,78,83,87;
類行業(yè):76,67,80,85,79,81;
類行業(yè):87,89,76,86,75,84,90,82.
(Ⅰ)計(jì)算該城區(qū)這三類行業(yè)中每類行業(yè)的單位個(gè)數(shù);
(Ⅱ)若從抽取的類行業(yè)這6個(gè)單位中,再隨機(jī)選取3個(gè)單位進(jìn)行某項(xiàng)調(diào)查,求選出的這3個(gè)單位中既有“星級(jí)”環(huán)保單位,又有“非星級(jí)”環(huán)保單位的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】長(zhǎng)沙某超市計(jì)劃按月訂購(gòu)一種冰激凌,每天進(jìn)貨量相同,進(jìn)貨成本為每桶5元,售價(jià)為每桶7元,未售出的冰激凌以每桶3元的價(jià)格當(dāng)天全部處理完畢.根據(jù)往年銷售經(jīng)驗(yàn),每天的需求量與當(dāng)天最高氣溫(單位:)有關(guān),如果最高氣溫不低于,需求量為600桶;如果最高氣溫(單位:)位于區(qū)間,需求量為400桶;如果最高氣溫低于,需求量為200桶.為了確定今年九月份的訂購(gòu)計(jì)劃,統(tǒng)計(jì)了前三年九月份各天的最高氣溫?cái)?shù)據(jù),得下面的頻數(shù)分布表:
最高氣溫() | ||||||
天數(shù) | 2 | 16 | 36 | 25 | 7 | 4 |
以最高氣溫位于各區(qū)間的頻率代替最高氣溫位于該區(qū)間的概率.
(1)求九月份這種冰激凌一天的需求量(單位:桶)的分布列;
(2)設(shè)九月份一天銷售這種冰激凌的利潤(rùn)為(單位:元),當(dāng)九月份這種冰激凌一天的進(jìn)貨量(單位:桶)為多少時(shí),的均值取得最大值?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè),命題p:函數(shù)在內(nèi)單調(diào)遞增;q:函數(shù)僅在處有極值.
(1)若命題q是真命題,求a的取值范圍;
(2)若命題是真命題,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】函數(shù)
(1)求的值;
(2)時(shí),求的取值范圍;
(3)函數(shù)的性質(zhì)通常指的是函數(shù)的定義域、值域、單調(diào)性、周期性、奇偶性等,請(qǐng)你探究函數(shù)其中的三個(gè)性質(zhì)(直接寫出結(jié)論即可)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn),是函數(shù)圖象上的任意兩點(diǎn),且角的終邊經(jīng)過點(diǎn),若時(shí),的最小值為.
(1)求函數(shù)的解析式;
(2)若方程在內(nèi)有兩個(gè)不同的解,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的左、右焦點(diǎn)分別為,,直線()與橢圓交于,兩點(diǎn)(點(diǎn)在軸的上方).
(1)若,求的面積;
(2)是否存在實(shí)數(shù)使得以線段為直徑的圓恰好經(jīng)過坐標(biāo)原點(diǎn)?若存在,求出的值;若不存在,請(qǐng)說明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com