【題目】如圖所示,四棱錐的底面是直角梯形,平面,,為中點(diǎn),且.
(1)求證:平面;
(2)若與底面所成角為,求二面角的余弦值.
【答案】(1)證明見(jiàn)解析(2)
【解析】
(1)推導(dǎo)出及,則可證明平面.
(2)由已知線面角可得,以為坐標(biāo)原點(diǎn),分別為軸、軸、軸的正方向建立空間直角坐標(biāo)系,求出平面SBC的法向量和平面的法向量,利用向量法能求出二面角的余弦值.
(1)因?yàn)?/span>平面,平面,所以
在直角梯形中,,∴,∴,
又,所以平面.
(2)因?yàn)?/span>平面,所以是與底面所成角,,所以
以為坐標(biāo)原點(diǎn),分別為軸、軸、軸的正方向建立空間直角坐標(biāo)系,
由題意得B(4,0,0),E(2,0,0),C(2,2,0),S(0,0,2 ),
設(shè)平面的法向量為(x,y,z),
∴.
所以,即,
面的法向量,同理得面的法向量
二面角的余弦值為
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,三棱柱中,側(cè)面,已知,,,點(diǎn)是棱的中點(diǎn).
(1)求證:平面;
(2)求二面角的余弦值;
(3)在棱上是否存在一點(diǎn),使得與平面所成角的正弦值為,若存在,求出的值;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),.
(1)若函數(shù)有唯一的極小值點(diǎn),求實(shí)數(shù)的取值范圍;
(2)求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某購(gòu)物商場(chǎng)分別推出支付寶和微信“掃碼支付”購(gòu)物活動(dòng),活動(dòng)設(shè)置了一段時(shí)間的推廣期,由于推廣期內(nèi)優(yōu)惠力度較大,吸引越來(lái)越多的人開(kāi)始使用“掃碼支付”.現(xiàn)統(tǒng)計(jì)了活動(dòng)剛推出一周內(nèi)每天使用掃碼支付的人次,用表示活動(dòng)推出的天數(shù),表示每天使用掃碼支付的人次,統(tǒng)計(jì)數(shù)據(jù)如下表所示:
(1)根據(jù)散點(diǎn)圖判斷,在推廣期內(nèi),掃碼支付的人次關(guān)于活動(dòng)推出天數(shù)的回歸方程適合用來(lái)表示,求出該回歸方程,并預(yù)測(cè)活動(dòng)推出第天使用掃碼支付的人次;
(2)推廣期結(jié)束后,商場(chǎng)對(duì)顧客的支付方式進(jìn)行統(tǒng)計(jì),結(jié)果如下表:
支付方式 | 現(xiàn)金 | 會(huì)員卡 | 掃碼 |
比例 |
商場(chǎng)規(guī)定:使用現(xiàn)金支付的顧客無(wú)優(yōu)惠,使用會(huì)員卡支付的顧客享受折優(yōu)惠,掃碼支付的顧客隨機(jī)優(yōu)惠,根據(jù)統(tǒng)計(jì)結(jié)果得知,使用掃碼支付的顧客,享受折優(yōu)惠的概率為,享受折優(yōu)惠的概率為,享受折優(yōu)惠的概率為.現(xiàn)有一名顧客購(gòu)買了元的商品,根據(jù)所給數(shù)據(jù)用事件發(fā)生的頻率來(lái)估計(jì)相應(yīng)事件發(fā)生的概率,估計(jì)該顧客支付的平均費(fèi)用是多少?
參考數(shù)據(jù):設(shè),,,
參考公式:對(duì)于一組數(shù)據(jù),,…,,其回歸直線的斜率和截距的最小二乘估計(jì)公式分別為:,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】平面內(nèi)任意一點(diǎn)到兩定點(diǎn)、的距離之和為.
(1)若點(diǎn)是第二象限內(nèi)的一點(diǎn)且滿足,求點(diǎn)的坐標(biāo);
(2)設(shè)平面內(nèi)有關(guān)于原點(diǎn)對(duì)稱的兩定點(diǎn),判別是否有最大值和最小值,請(qǐng)說(shuō)明理由?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知Rt△ABC如圖(1),∠C=90°,D.E分別是AC,AB的中點(diǎn),將△ADE沿DE折起到PDE位置(即A點(diǎn)到P點(diǎn)位置)如圖(2)使∠PDC=60°.
(1)求證:BC⊥PC;
(2)若BC=2CD=4,求點(diǎn)D到平面PBE的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,正四棱柱ABCD﹣A1B1C1D1中,O是BD的中點(diǎn),E是棱CC1上任意一點(diǎn).
(1)證明:BD⊥A1E;
(2)如果AB=2,,OE⊥A1E,求AA1的長(zhǎng).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為滿足人們的閱讀需求,圖書(shū)館設(shè)立了無(wú)人值守的自助閱讀區(qū),提倡人們?cè)陂喿x后將圖書(shū)分類放回相應(yīng)區(qū)域.現(xiàn)隨機(jī)抽取了某閱讀區(qū)500本圖書(shū)的分類歸還情況,數(shù)據(jù)統(tǒng)計(jì)如下(單位:本).
文學(xué)類專欄 | 科普類專欄 | 其他類專欄 | |
文學(xué)類圖書(shū) | 100 | 40 | 10 |
科普類圖書(shū) | 30 | 200 | 30 |
其他圖書(shū) | 20 | 10 | 60 |
(1)根據(jù)統(tǒng)計(jì)數(shù)據(jù)估計(jì)文學(xué)類圖書(shū)分類正確的概率;
(2)根據(jù)統(tǒng)計(jì)數(shù)據(jù)估計(jì)圖書(shū)分類錯(cuò)誤的概率;
(3)假設(shè)文學(xué)類圖書(shū)在“文學(xué)類專欄”、“科普類專欄”、“其他類專欄”的數(shù)目分別為,,,其中,,,當(dāng),,的方差最大時(shí),求,的值,并求出此時(shí)方差的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐中,底面為正方形,底面,,為線段的中點(diǎn),若為線段上的動(dòng)點(diǎn)(不含).
(1)平面與平面是否互相垂直?如果是,請(qǐng)證明;如果不是,請(qǐng)說(shuō)明理由;
(2)求二面角的余弦值的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com