【題目】如圖,在四棱錐中,底面為正方形,底面,,為線段的中點,若為線段上的動點(不含).
(1)平面與平面是否互相垂直?如果是,請證明;如果不是,請說明理由;
(2)求二面角的余弦值的取值范圍.
【答案】(1)平面平面,理由見解析;(2)
【解析】
(1)利用線面垂直的判定定理證明平面,根據(jù)線面關(guān)系即可證明平面與平面垂直;
(2)建立空間直角坐標系,根據(jù)平面與平面法向量的夾角的余弦的取值范圍,計算出二面角的余弦值的取值范圍.
(1)因為,為線段的中點.所以.
因為底面,平面,所以,
又因為底面為正方形,所以,,所以平面,
因為平面,所以.因為,所以平面,
因為平面,所以平面平面.
(2)由題意,以,所在直線分別為,軸建立空間直角坐標系如圖所示,令,
則,,,(其中).易知平面的一個法向量.
設(shè)平面的法向量,由即
令,則是平面的一個法向量.,
由,所以,所以.
故若為線段上的動點(不含),二面角的余弦值的取值范圍是.
科目:高中數(shù)學 來源: 題型:
【題目】已知焦點在x軸上的雙曲線C的兩條漸近線過坐標原點,且兩條漸近線與以點為圓心,1為半徑的圓相切,又知C的一個焦點與P關(guān)于直線對稱.
(1)求雙曲線C的方程;
(2)設(shè)直線與雙曲線C的左支交于A、B兩點,另一直線經(jīng)過及AB的中點,求直線在y軸上的截距b的取值范圍;
(3)若Q是雙曲線C上的任一點,、為雙曲線C的左、右兩個焦點,從引的角平分線的垂線,垂足為N,試求點N的軌跡方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】現(xiàn)有31行67列表格一個,每個小格都只填1個數(shù),從左上角開始,第一行依次為1,2,,67,第二行依次為68,69,,134,依次把表格填滿,現(xiàn)將此表格的數(shù)按另一方式填寫,從左上角開始,第一列從上到下依次為1,2,,31,第二列從上到下依次為32,33,,62,依次把表格填滿,對于上述兩種填法,在同一個小格里兩次填寫的數(shù)相同,這樣的小格在表格中共有________個
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】函數(shù)
(1)討論在其定義域上的單調(diào)性;
(2)設(shè),m,n分別為的極大值和極小值,若S=m-n,求S的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設(shè)函數(shù),,其中,e是自然對數(shù)的底數(shù).
(1)若在上存在兩個極值點,求a的取值范圍;
(2)當,設(shè),,若在上存在兩個極值點,,且,求證: .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】雙曲線繞坐標原點旋轉(zhuǎn)適當角度可以成為函數(shù)的圖象,關(guān)于此函數(shù)有如下四個命題:① 是奇函數(shù);② 的圖象過點或;③ 的值域是;④ 函數(shù)有兩個零點;則其中所有真命題的序號為________.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】(1)取何值時,方程()無解?有一解?有兩解?有三解?
(2)函數(shù)的性質(zhì)通常指函數(shù)的定義域、值域、周期性、單調(diào)性、奇偶性等,請選擇適當?shù)奶骄宽樞颍芯亢瘮?shù)的性質(zhì),并在此基礎(chǔ)上,作出其在的草圖;
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com