【題目】如圖,正四棱柱ABCD﹣A1B1C1D1中,O是BD的中點,E是棱CC1上任意一點.
(1)證明:BD⊥A1E;
(2)如果AB=2,,OE⊥A1E,求AA1的長.
【答案】(1)證明見解析(2)
【解析】
(1)根據(jù)正四棱柱性質(zhì)得AA1⊥平面ABCD,即得AA1⊥BD,根據(jù)正方形性質(zhì)的AC⊥BD,再根據(jù)線面垂直判定定理得BD⊥平面ACC1A1,即可得結(jié)論;
(2)根據(jù)勾股定理列等量關(guān)系,解得結(jié)果.
(1)證明:連結(jié)AC,A1C1,
∵AA1⊥平面ABCD,BD平面ABCD,
∴AA1⊥BD,
∵四邊形ABCD是正方形,∴AC⊥BD,
又AC∩AA1=A,AC平面ACC1A1,AA1平面ACC1A1,
∴BD⊥平面ACC1A1,又A1E平面ACC1A1,
∴BD⊥A1E.
(2)∵AB=2,∴AO=CO=,A1C1=2,
設(shè)AA1=a,則C1E=a﹣,
∴OE2=4,A1O2=a2+2,A1E2=(a﹣)2+8=a2﹣2a+10,
∵OE⊥A1E,
∴A1O2=OE2+A1E2,即a2+2=4+a2﹣2a+10,
解得a=.∴AA1=.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓:的兩個焦點為,,焦距為,直線:與橢圓相交于,兩點,為弦的中點.
(1)求橢圓的標準方程;
(2)若直線:與橢圓相交于不同的兩點,,,若(為坐標原點),求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)(,為實數(shù)).
(1)若為偶函數(shù),求實數(shù)的值;
(2)設(shè),求函數(shù)的最小值(用表示).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2019年慶祝中華人民共和國成立70周年閱兵式彰顯了中華民族從站起來、富起來邁向強起來的雄心壯志.閱兵式規(guī)模之大、類型之全均創(chuàng)歷史之最,編組之新、要素之全彰顯強軍成就.裝備方陣堪稱“強軍利刃”“強國之盾”,見證著人民軍隊邁向世界一流軍隊的堅定步伐.此次大閱兵不僅得到了全中國人的關(guān)注,還得到了無數(shù)外國人的關(guān)注.某單位有6位外國人,其中關(guān)注此次大閱兵的有5位,若從這6位外國人中任意選取2位做一次采訪,則被采訪者都關(guān)注了此次大閱兵的概率為( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知三棱錐的四個頂點都在球的表面上,平面,,,,,則:(1)球的表面積為__________;(2)若是的中點,過點作球的截面,則截面面積的最小值是__________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知焦點在x軸上的雙曲線C的兩條漸近線過坐標原點,且兩條漸近線與以點為圓心,1為半徑的圓相切,又知C的一個焦點與P關(guān)于直線對稱.
(1)求雙曲線C的方程;
(2)設(shè)直線與雙曲線C的左支交于A、B兩點,另一直線經(jīng)過及AB的中點,求直線在y軸上的截距b的取值范圍;
(3)若Q是雙曲線C上的任一點,、為雙曲線C的左、右兩個焦點,從引的角平分線的垂線,垂足為N,試求點N的軌跡方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù),,其中,e是自然對數(shù)的底數(shù).
(1)若在上存在兩個極值點,求a的取值范圍;
(2)當,設(shè),,若在上存在兩個極值點,,且,求證: .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com