【題目】設(shè)m,n是兩條不同的直線,α,β是兩個(gè)不同的平面,則下列敘述正確的是( )
A.若α∥β,m∥α,n∥β,則m∥n
B.若α⊥β,m⊥α,n∥β,則m⊥n
C.若m∥α,n∥α,m∥β,n∥β,m⊥n,則α∥β
D.若m⊥α,nβ,m⊥n,則α⊥β
【答案】C
【解析】解:在長方體ABCD﹣A′B′C′D′中,
(1)令平面ABCD為平面α,平面A′B′C′D′為平面β,A′B′為直線m,BC為直線n,
顯然α∥β,m∥α,n∥β,但m與n不平行,故A錯(cuò)誤.
(2)令平面ABCD為平面α,平面ABB′A′為平面β,直線BB′為直線m,直線CC′為直線n,
顯然α⊥β,m⊥α,n∥β,m∥n.故B錯(cuò)誤.
(3)令平面ABCD為平面α,平面A′B′C′D′為平面β,直線BB′為直線m,直線B′C′為直線n,
顯然m⊥α,nβ,m⊥n,但α∥β,故D錯(cuò)誤.
故選C.
【考點(diǎn)精析】根據(jù)題目的已知條件,利用空間中直線與直線之間的位置關(guān)系的相關(guān)知識可以得到問題的答案,需要掌握相交直線:同一平面內(nèi),有且只有一個(gè)公共點(diǎn);平行直線:同一平面內(nèi),沒有公共點(diǎn);異面直線: 不同在任何一個(gè)平面內(nèi),沒有公共點(diǎn).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】函數(shù)f(x)=sin(ωx+ )(ω>0)的圖象的相鄰兩條對稱軸間的距離是 .若將函數(shù)f(x)的圖象向右平移 個(gè)單位,再把圖象上每個(gè)點(diǎn)的橫坐標(biāo)縮小為原來的一半,得到g(x),則g(x)的解析式為( )
A.g(x)=sin(4x+ )
B.g(x)=sin(8x﹣ )??
C.g(x)=sin(x+ )
D.g(x)=sin4x
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),設(shè)關(guān)于的方程有個(gè)不同的實(shí)數(shù)解,則的所有可能的值為( )
A. 3 B. 1或3 C. 4或6 D. 3或4或6
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】【河南省部分重點(diǎn)中學(xué)2017屆高三上學(xué)期第一次聯(lián)考】在平面直角坐標(biāo)系中,已知圓和圓.
(Ⅰ)若直線過點(diǎn),且被圓截得的弦長為,求直線的方程;
(Ⅱ)設(shè)為平面直角坐標(biāo)系上的點(diǎn),滿足:存在過點(diǎn)的無窮多對相互垂直的直線和,它們分別與
圓和相交,且直線被圓截得的弦長與直線被圓截得的弦長相等,試求所有滿足條件的點(diǎn)
的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)試確定的取值范圍,使得函數(shù)在上為單調(diào)函數(shù);
(2)若為自然數(shù),則當(dāng)取哪些值時(shí),方程在上有三個(gè)不相等的實(shí)數(shù)根,并求出相應(yīng)的實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)的定義域?yàn)?/span>,若函數(shù)滿足:對于給定的 ,存在,使得成立,那么稱具有性質(zhì).
(1)函數(shù) 是否具有性質(zhì)?說明理由;
(2)已知函數(shù)具有性質(zhì),求的最大值;
(3)已知函數(shù)的定義域?yàn)?/span>,滿足,且的圖像是一條連續(xù)不斷的曲線,問:是否存在正整數(shù)n,使得函數(shù)具有性質(zhì),若存在,求出這樣的n的取值集合;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知含有個(gè)元素的正整數(shù)集(, )具有性質(zhì):對任意不大于(其中)的正整數(shù),存在數(shù)集的一個(gè)子集,使得該子集所有元素的和等于.
(Ⅰ)寫出, 的值;
(Ⅱ)證明:“, ,…, 成等差數(shù)列”的充要條件是“”;
(Ⅲ)若,求當(dāng)取最小值時(shí)的最大值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com