【題目】已知含有個元素的正整數(shù)集(, )具有性質:對任意不大于(其中)的正整數(shù),存在數(shù)集的一個子集,使得該子集所有元素的和等于.
(Ⅰ)寫出, 的值;
(Ⅱ)證明:“, ,…, 成等差數(shù)列”的充要條件是“”;
(Ⅲ)若,求當取最小值時的最大值.
【答案】(Ⅰ), ;(Ⅱ)見解析;(Ⅲ) .
【解析】試題分析: (Ⅰ)由為正整數(shù),則, ., ,即可求得, . (Ⅱ)先證必要性:由, ,…, 成等差數(shù)列,故,由等差數(shù)列的求和公式得: ;再證充分性:由,故(, ,…, ),故, ,…, 為等差數(shù)列.(Ⅲ)先證明(, ,…, ),因此,即,所以.由集合的性質,分類,即可求得當取最小值11時, 的最大值為.
試題解析:(Ⅰ), .
(Ⅱ)先證必要性:
因為, ,又, ,…, 成等差數(shù)列,故,所以;
再證充分性:
因為, , ,…, 為正整數(shù)數(shù)列,故有
, , , ,…, ,
所以,
又,故(, ,…, ),故, ,…, 為等差數(shù)列.
(Ⅲ)先證明(, ,…, ).
假設存在,且為最小的正整數(shù).
依題意,則 ,,又因為,
故當時, 不能等于集合的任何一個子集所有元素的和.
故假設不成立,即(, ,…, )成立.
因此,
即,所以.
因為,則,
若時,則當時,集合中不可能存在若干不同元素的和為,
故,即.
此時可構造集合.
因為當時, 可以等于集合中若干個元素的和;
故當時, 可以等于集合中若干不同元素的和;
……
故當時, 可以等于集合中若干不同元素的和;
故當時, 可以等于集合中若干不同元素的和;
故當時, 可以等于集合中若干不同元素的和,
所以集合滿足題設,
所以當取最小值11時, 的最大值為.
科目:高中數(shù)學 來源: 題型:
【題目】設m,n是兩條不同的直線,α,β是兩個不同的平面,則下列敘述正確的是( )
A.若α∥β,m∥α,n∥β,則m∥n
B.若α⊥β,m⊥α,n∥β,則m⊥n
C.若m∥α,n∥α,m∥β,n∥β,m⊥n,則α∥β
D.若m⊥α,nβ,m⊥n,則α⊥β
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某地區(qū)2010年至2016年農(nóng)村居民家庭純收入(單位:千元)的數(shù)據(jù)如下表
年份 | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 |
年份代號x | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
人均純收入y | 2.9 | 3.3 | 3.6 | 4.4 | 4.8 | 5.2 | 5.9 |
(1)求關于的線性回歸方程。
(2)判斷與之間是正相關還是負相關?
(3)預測該地區(qū)2018年農(nóng)村居民家庭人均純收入。
附:回歸直線的斜率和截距的最小二乘法估計公式分別為:
,
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】選修4-4:坐標系與參數(shù)方程
以直角坐標系的原點O為極點, 軸的正半軸為極軸,且兩個坐標系取相等的單位長度.已知過點P(1,1)的直線的參數(shù)方程是
(I)寫出直線的極坐標方程;
(II)設與圓相交于兩點A、B,求點P到A、B兩點的距離之積
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某折疊餐桌的使用步驟如圖所示,有如圖檢查項目:
項目①:折疊狀態(tài)下(如圖1),檢查四條桌腿長相等;
項目②:打開過程中(如圖2),檢查;
項目③:打開過程中(如圖2),檢查;
項目④:打開后(如圖3),檢查;
項目⑤:打開后(如圖3),檢查.
在檢查項目的組合中,可以正確判斷“桌子打開之后桌面與地面平行的是”( )
A. ①②③ B. ②③④ C. ②④⑤ D. ③④⑤
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設△ABC的內角A,B,C所對的邊分別為a,b,c,若bcosC+ccosB=asinA,則△ABC的形狀為( )
A.銳角三角形
B.直角三角形
C.鈍角三角形
D.不確定
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】一戶居民根據(jù)以往的月用電量情況,繪制了月用電量的頻率分布直方圖(月用電量都在25度到325度之間)如圖所示.將月用電量落入該區(qū)間的頻率作為概率.若每月的用電量在200度以內(含200度),則每度電價0.5元,若每月的用電量超過200度,則超過的部分每度電價0.6元.記(單位:度,)為該用戶下個月的用電量,(單位:元)為下個月所繳納的電費.
(1)估計該用戶的月用電量的平均值(同一組中的數(shù)據(jù)用該組區(qū)間的中點值作代表);
(2)將表示為的函數(shù);
(3)根據(jù)直方圖估計下個月所繳納的電費的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】
有甲、乙、丙、丁四名網(wǎng)球運動員,通過對過去戰(zhàn)績的統(tǒng)計,在一場比賽中,甲對乙、丙、丁取勝的概率分別為.
(Ⅰ)若甲和乙之間進行三場比賽,求甲恰好勝兩場的概率;
(Ⅱ)若四名運動員每兩人之間進行一場比賽,設甲獲勝場次為,求隨機變量的分布列及期望.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=x2+(a+8)x+a2+a﹣12(a<0),且f(a2﹣4)=f(2a﹣8),則 的最小值為( )
A.
B.
C.
D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com