【題目】如圖,已知四棱錐S﹣ABCD,底面ABCD為菱形,SA⊥平面ABCD,∠ADC=60°,E,F分別是SC,BC的中點.
(1)證明:SD⊥AF;
(2)若AB=2,SA=4,求二面角F﹣AE﹣C的余弦值.
【答案】
(1)證明:由四邊形ABCD為菱形,∠ADC=60°,可得△ABC為正三角形.
因為F為BC的中點,所以AF⊥BC.
又BC∥AD,因此AE⊥AD.
因為SA⊥平面ACDB,AE平面ABCD,所以SA⊥AF.
而SA平面SAD,AD平面SAD且SA∩AD=A,
所以AF⊥平面PAD.又SD平面SAD,
所以AF⊥SD.
(2)解:由(1)知AF,AD,AS兩兩垂直,以A為坐標原點,建立如圖所示的空間直角坐標系,又E,F分別為SC,BC的中點,所以 , ,
所以 .
設平面AEF的一法向量為 ,
則 因此
取Z1=﹣1,則 ,
因為BD⊥AC,BD⊥SA,SA∩AC=A,
所以BD⊥平面AEC,
故 為平面AEC的一法向量,且 ,
所以 ,
由于二面角E﹣AF﹣C為銳角,所以所求二面角的余弦值為 .
【解析】(1)證明AF⊥BC.SA⊥AF.推出AF⊥平面PAD.然后利用直線與平面垂直的性質定理證明AF⊥SD.(2)以A為坐標原點,建立如圖所示的空間直角坐標系,求出相關點的坐標,求出平面AEF的一法向量,平面AEC的一法向量,通過斜率的數量積求解二面角的余弦值即可.
【考點精析】解答此題的關鍵在于理解直線與平面垂直的性質的相關知識,掌握垂直于同一個平面的兩條直線平行.
科目:高中數學 來源: 題型:
【題目】已知點F(0,1),直線l:y=﹣1,P為平面上的動點,過點P作直線l的垂線,垂足為Q,且 .
(1)求動點P的軌跡C的方程;
(2)已知圓M過定點D(0,2),圓心M在軌跡C上運動,且圓M與x軸交于A、B兩點,設|DA|=l1 , |DB|=l2 , 求 的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】2017高考特別強調了要增加對數學文化的考查,為此某校高三年級特命制了一套與數學文化有關的專題訓練卷(文、理科試卷滿分均為100分),并對整個高三年級的學生進行了測試.現從這些學生中隨機抽取了50名學生的成績,按照成績?yōu)?/span>, ,…, 分成了5組,制成了如圖所示的頻率分布直方圖(假定每名學生的成績均不低于50分).
(1)求頻率分布直方圖中的的值,并估計所抽取的50名學生成績的平均數、中位數(同一組中的數據用該組區(qū)間的中點值代表);
(2)若高三年級共有2000名學生,試估計高三學生中這次測試成績不低于70分的人數;
(3)若在樣本中,利用分層抽樣的方法從成績不低于70分的三組學生中抽取6人,再從這6人中隨機抽取3人參加這次考試的考后分析會,試求兩組中至少有1人被抽到的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知直線的參數方程為(為參數),以坐標原點為極點, 軸的非負半軸為極軸建立極坐標系,圓的極坐標方程為,直線與圓交于, 兩點.
(1)求圓的直角坐標方程及弦的長;
(2)動點在圓上(不與, 重合),試求的面積的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】商品在近30天內每件的銷售價格P(元)與時間t(天)的函數關系p=
該商品的日銷售量Q(件)時間t(天)的函數關系Q=﹣t+40(0<t≤30,t∈N*)
求該商品的日銷售額的最大值,并指出日銷售額最大一天是30天中的第幾天?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某學校高一 、高二 、高三三個年級共有 名教師,為調查他們的備課時間情況,通過分層
抽樣獲得了名教師一周的備課時間 ,數據如下表(單位 :小時):
高一年級 | ||||||||
高二年級 | ||||||||
高三年級 |
(1)試估計該校高三年級的教師人數 ;
(2)從高一年級和高二年級抽出的教師中,各隨機選取一人,高一年級選出的人記為甲 ,高二年級選出的人記為乙 ,求該周甲的備課時間不比乙的備課時間長的概率 ;
(3)再從高一、高二、高三三個年級中各隨機抽取一名教師,他們該周的備課時間分別是(單位: 小時),這三個數據與表格中的數據構成的新樣本的平均數記為,表格中的數據平均數記為 ,試判斷與的大小. (結論不要求證明)
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com