【題目】已知直線的參數(shù)方程是(是參數(shù)),以坐標(biāo)原點(diǎn)為原點(diǎn), 軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.
(1)判斷直線與曲線的位置關(guān)系;
(2)過(guò)直線上的點(diǎn)作曲線的切線,求切線長(zhǎng)的最小值.
【答案】(1)相離;(2).
【解析】試題分析:(1)利用加減消元法消去,可得直線的方程為.將圓的極坐標(biāo)方程展開(kāi)后兩邊成立,轉(zhuǎn)化為直角坐標(biāo)方程為.利用圓心到直線的距離判斷出直線和圓相離.(2)利用直線的參數(shù)方程,得到直線上任意一點(diǎn)的坐標(biāo),利用勾股定理求出切線長(zhǎng),最后利用配方法求得最小值.
試題解析:
(1)由直線的參數(shù)方程消去參數(shù)得的方程為.
,
,
曲線的直角坐標(biāo)方程為,
即.
圓心到直線的距離為,
直線與圓的相離.
(2)直線上的點(diǎn)向圓引切線,則切線長(zhǎng)為
.
即切線長(zhǎng)的最小值為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】甲船在島B的正南A處,AB=10千米.甲船以每小時(shí)4千米的速度向北航行,同時(shí),乙船自B出發(fā)以每小時(shí)6千米的速度向北偏東60°的方向駛?cè)ィ?dāng)甲船在A,B之間,且甲、乙兩船相距最近時(shí),它們所航行的時(shí)間是( )
A. 分鐘 B. 小時(shí) C. 21.5分鐘 D. 2.15分鐘
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】正方體的棱長(zhǎng)為,是與的交點(diǎn),為的中點(diǎn).
(I)求證:直線平面.
(II)求證:平面.
(III)二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】對(duì)某地區(qū)兒童的身高與體重的一組數(shù)據(jù),我們用兩種模型①,②擬合,得到回歸方程分別為, ,作殘差分析,如表:
身高 | 60 | 70 | 80 | 90 | 100 | 110 |
體重 | 6 | 8 | 10 | 14 | 15 | 18 |
0.41 | 0.01 | 1.21 | -0.19 | 0.41 | ||
-0.36 | 0.07 | 0.12 | 1.69 | -0.34 | -1.12 |
(Ⅰ)求表中空格內(nèi)的值;
(Ⅱ)根據(jù)殘差比較模型①,②的擬合效果,決定選擇哪個(gè)模型;
(Ⅲ)殘差大于的樣本點(diǎn)被認(rèn)為是異常數(shù)據(jù),應(yīng)剔除,剔除后對(duì)(Ⅱ)所選擇的模型重新建立回歸方程.
(結(jié)果保留到小數(shù)點(diǎn)后兩位)
附:對(duì)于一組數(shù)據(jù),其回歸直線的斜率和截距的最小二乘法估計(jì)分別為, .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在正三棱柱中, , ,點(diǎn)為的中點(diǎn).
(I)求證: ;
(II)若點(diǎn)為上的點(diǎn),且滿足,若二面角的余弦值為,求實(shí)數(shù)的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知點(diǎn),⊙.
(Ⅰ)當(dāng)直線過(guò)點(diǎn)且與圓心的距離為時(shí),求直線的方程.
(Ⅱ)設(shè)過(guò)點(diǎn)的直線與⊙交于, 兩點(diǎn),且,求以線段為直徑的圓的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知平面直角坐標(biāo)系內(nèi)三點(diǎn).
(1) 求過(guò)三點(diǎn)的圓的方程,并指出圓心坐標(biāo)與圓的半徑;
(2)求過(guò)點(diǎn)與條件 (1) 的圓相切的直線方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(Ⅰ)當(dāng)時(shí),求函數(shù)的極值;
(Ⅱ) 時(shí),討論的單調(diào)性;進(jìn)一步地,若對(duì)任意的,恒有成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,正方體的棱長(zhǎng)為,,分別是棱,的中點(diǎn),過(guò)直線,的平面分別與棱、交于,,設(shè),,給出以下四個(gè)命題:
①平面平面;
②當(dāng)且僅當(dāng)時(shí),四邊形的面積最小;
③四邊形周長(zhǎng),是單調(diào)函數(shù);
④四棱錐的體積為常函數(shù);
以上命題中假命題的序號(hào)為( ).
A. ①④ B. ② C. ③ D. ③④
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com