【題目】某市教育局為了監(jiān)控某校高一年級的素質教育過程,從該校高一年級16個班隨機抽取了16個樣本成績,制表如下:

抽取次序

1

2

3

4

5

6

7

8

測評成績

95

96

96

90

95

98

98

97

抽取次序

9

10

11

12

13

14

15

16

測評成績

97

95

96

98

99

96

99

96

為抽取的第個學生的素質教育測評成績,,經(jīng)計算得,,以下計算精確到0.01.

1)求的相關系數(shù),并回答是否可以認為具有較強的相關性;

2)在抽取的樣本成績中,如果出現(xiàn)了在之外的成績,就認為本學期的素質教育過程可能出現(xiàn)了異常情況,需對本學期的素質教學過程進行反思,同時對下學期的素質教育過程提出指導性的建議,從該校抽樣的結果來看,是否需對本學期的素質教學過程進行反思,同時對下學期的素質教育過程提出指導性的建議?

附:樣本的相關系數(shù),若,則可以認為兩個變量具有較強的線性相關性.

【答案】10.44,可以認為不具有較強的線性相關性;(2)需對本學期的素質教學過程進行反思,同時對下學期的素質教育過程提出指導性的建議.

【解析】

1)計算樣本的相關系數(shù),與0.75比較得出結論;

2)計算,得出第4次抽測的成績90之外,由此得出結論.

1)由樣本數(shù)據(jù)得的相關系數(shù)為

,

因為,所以可以認為不具有較強的線性相關性;

2)由已知,,得,

由樣本數(shù)據(jù)可以看出抽取的第4個測評成績90以外,因此需對本學期的素質教學過程進行反思,同時對下學期的素質教育過程提出指導性的建議.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖,已知多面體的底面是邊長為的菱形, 底面 ,且

1證明:平面平面;

2若直線與平面所成的角為求二面角

的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某工廠改造一廢棄的流水線M,為評估流水線M的性能,連續(xù)兩天從流水線M生產零件上隨機各抽取100件零件作為樣本,測量其直徑后,整理得到下表:記抽取的零件直徑為X.

第一天

直徑/mm

58

59

61

62

63

64

65

66

67

68

69

70

71

73

合計

件數(shù)

1

1

3

5

6

19

33

18

4

4

2

1

2

1

100

第二天

直徑/mm

58

60

61

62

63

64

65

66

67

68

69

70

71

73

合計

件數(shù)

1

1

2

4

5

21

34

21

3

3

2

1

1

1

100

經(jīng)計算,第一天樣本的平均值,標準差第二天樣本的平均值,標準差

1)現(xiàn)以兩天抽取的零件來評判流水線M的性能.

i)計算這兩天抽取200件樣本的平均值和標準差(精確到0.01);

ii)現(xiàn)以頻率值作為概率的估計值,根據(jù)以下不等式進行評判(P表示相應事件的概率),①;②;③評判規(guī)則為:若同時滿足上述三個不等式,則設備等級為優(yōu);僅滿足其中兩個,則等級為良;若僅滿足其中一個,則等級為合格;若全部不滿足,則等級為不合格,試判斷流水線M的性能等級.

2)將直徑X范圍內的零件認定為一等品,在范圍以外的零件認定為次品,其余認定為合格品.現(xiàn)從200件樣本除一等品外的零件中抽取2個,設為抽到次品的件數(shù),求分布列及其期望.

附注:參考數(shù)據(jù):,,;

參考公式:標準差.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】國家規(guī)定每年的日以后的天為當年的暑假.某鋼琴培訓機構對位鋼琴老師暑假一天的授課量進行了統(tǒng)計,如下表所示:

授課量(單位:小時)

頻數(shù)

培訓機構專業(yè)人員統(tǒng)計近年該校每年暑假天的課時量情況如下表:

課時量(單位:天)

頻數(shù)

(同組數(shù)據(jù)以這組數(shù)據(jù)的中間值作代表)

1)估計位鋼琴老師一日的授課量的平均數(shù);

2)若以(1)中確定的平均數(shù)作為上述一天的授課量.已知當?shù)厥谡n價為/小時,每天的各類生活成本為/天;若不授課,不計成本,請依據(jù)往年的統(tǒng)計數(shù)據(jù),估計一位鋼琴老師天暑假授課利潤不少于萬元的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】橢圓的右焦點,過點且與軸垂直的直線被橢圓截得的弦長為

1)求橢圓的方程;

2)過點的直線與橢圓交于、兩點,為坐標原點,若,求的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某市教育局為了監(jiān)控某校高一年級的素質教育過程,從該校高一年級16個班隨機抽取了16個樣本成績,制表如下:

抽取次序

1

2

3

4

5

6

7

8

測評成績

95

96

96

90

95

98

98

97

抽取次序

9

10

11

12

13

14

15

16

測評成績

97

95

96

98

99

96

99

96

為抽取的第個學生的素質教育測評成績,,經(jīng)計算得,,.以下計算精確到0.01.

1)設為抽取的16個樣本的成績,用頻率估計概率,求的分布列、數(shù)學期望和標準方差

2)在抽取的樣本成績中,如果出現(xiàn)了在之外的成績,就認為本學期的素質教育過程可能出現(xiàn)了異常情況,需對本學期的素質教學過程進行反思,同時對下學期的素質教育過程提出指導性的建議.從該校抽樣的結果來看,是否需對本學期的素質教學過程進行反思,同時對下學期的素質教育過程提出指導性的建議?

3)列出不小于的所有樣本成績,設列出的這些成績的中位數(shù)為,每次從列出的這些成績中隨機抽取1個成績,有放回地連續(xù)抽取3次,求恰好有2次抽得的成績?yōu)?/span>的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知圓 經(jīng)過橢圓 的左右焦點,且與橢圓在第一象限的交點為,且三點共線,直線交橢圓, 兩點,且).

(1)求橢圓的方程;

(2)當三角形的面積取得最大值時,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖所示,已知四邊形是菱形,平面平面,.

1)求證:平面平面.

2)若,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

1)當時,求函數(shù)的最大值;

2)若函數(shù)存在兩個極值點,,求證:.

查看答案和解析>>

同步練習冊答案