【題目】某工廠改造一廢棄的流水線M,為評估流水線M的性能,連續(xù)兩天從流水線M生產(chǎn)零件上隨機各抽取100件零件作為樣本,測量其直徑后,整理得到下表:記抽取的零件直徑為X.

第一天

直徑/mm

58

59

61

62

63

64

65

66

67

68

69

70

71

73

合計

件數(shù)

1

1

3

5

6

19

33

18

4

4

2

1

2

1

100

第二天

直徑/mm

58

60

61

62

63

64

65

66

67

68

69

70

71

73

合計

件數(shù)

1

1

2

4

5

21

34

21

3

3

2

1

1

1

100

經(jīng)計算,第一天樣本的平均值,標準差第二天樣本的平均值,標準差

1)現(xiàn)以兩天抽取的零件來評判流水線M的性能.

i)計算這兩天抽取200件樣本的平均值和標準差(精確到0.01);

ii)現(xiàn)以頻率值作為概率的估計值,根據(jù)以下不等式進行評判(P表示相應事件的概率),①;②;③評判規(guī)則為:若同時滿足上述三個不等式,則設(shè)備等級為優(yōu);僅滿足其中兩個,則等級為良;若僅滿足其中一個,則等級為合格;若全部不滿足,則等級為不合格,試判斷流水線M的性能等級.

2)將直徑X范圍內(nèi)的零件認定為一等品,在范圍以外的零件認定為次品,其余認定為合格品.現(xiàn)從200件樣本除一等品外的零件中抽取2個,設(shè)為抽到次品的件數(shù),求分布列及其期望.

附注:參考數(shù)據(jù):,;

參考公式:標準差.

【答案】1)(i;(ii)合格;(2)分布列見解析,

【解析】

1)(ⅰ)因為兩天100個零件的平均值都是65,所以200個零件的平均值也是65,按照公式計算標準差;(ⅱ)分別計算的概率,然后比較等級;

(2)由(ⅱ)可知200件零件中合格品7個,次品4個,的可能取值為01,2,利用超幾何分布計算概率,并求分布列和數(shù)學期望.

1)(i)依題意:200個零件的直徑平均值為由標準差公式得:

第一天:,第二天:,

(注:如果寫出不給分)

ii)由(1)可知:,

僅滿足一個不等式,判斷流水線M的等級為合格.

2)可知200件零件中合格品7個,次品4個,的可能取值為0,1,2,則

,,

的分布列

0

1

2

P

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

Ⅰ)若曲線與直線相切,求的值.

Ⅱ)若設(shè)求證:有兩個不同的零點,且.(為自然對數(shù)的底數(shù))

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知某校一間辦公室有四位老師甲、乙、丙、。谀程斓哪硞時段,他們每人各做一項工作,一人在查資料,一人在寫教案,一人在批改作業(yè),另一人在打印材料.

若下面4個說法都是正確的:

甲不在查資料,也不在寫教案; 乙不在打印材料,也不在查資料;

丙不在批改作業(yè),也不在打印材料; 丁不在寫教案,也不在查資料.

此外還可確定:如果甲不在打印材料,那么丙不在查資料.根據(jù)以上信息可以判斷

A.甲在打印材料

B.乙在批改作業(yè)

C.丙在寫教案

D.丁在打印材料

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

1)當時,討論極值點的個數(shù);

2)若函數(shù)有兩個零點,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

1)當時,討論極值點的個數(shù);

2)若函數(shù)有兩個零點,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】[選修4-4:坐標系與參數(shù)方程]

已知曲線的極坐標方程為,以極點為直角坐標原點,以極軸為軸的正半軸建立平面直角坐標系,將曲線向左平移個單位長度,再將得到的曲線上的每一個點的橫坐標縮短為原來的,縱坐標保持不變,得到曲線

(1)求曲線的直角坐標方程;

(2)已知直線的參數(shù)方程為,(為參數(shù)),點為曲線上的動點,求點到直線距離的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知拋物線,過拋物線C的焦點F的直線l交拋物線CA,B兩點,且A,B兩點在拋物線C的準線上的投影分別P、Q

1)已知,若,求直線l的方程;

2)設(shè)P、Q的中點為M,請判斷PFMB的位置關(guān)系并說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某市教育局為了監(jiān)控某校高一年級的素質(zhì)教育過程,從該校高一年級16個班隨機抽取了16個樣本成績,制表如下:

抽取次序

1

2

3

4

5

6

7

8

測評成績

95

96

96

90

95

98

98

97

抽取次序

9

10

11

12

13

14

15

16

測評成績

97

95

96

98

99

96

99

96

為抽取的第個學生的素質(zhì)教育測評成績,,經(jīng)計算得,,,以下計算精確到0.01.

1)求的相關(guān)系數(shù),并回答是否可以認為具有較強的相關(guān)性;

2)在抽取的樣本成績中,如果出現(xiàn)了在之外的成績,就認為本學期的素質(zhì)教育過程可能出現(xiàn)了異常情況,需對本學期的素質(zhì)教學過程進行反思,同時對下學期的素質(zhì)教育過程提出指導性的建議,從該校抽樣的結(jié)果來看,是否需對本學期的素質(zhì)教學過程進行反思,同時對下學期的素質(zhì)教育過程提出指導性的建議?

附:樣本的相關(guān)系數(shù),若,則可以認為兩個變量具有較強的線性相關(guān)性.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】隨著生活水平的提高和人們對健康生活的重視,越來越多的人加入到健身運動中.國家統(tǒng)計局數(shù)據(jù)顯示,2019年有4億國人經(jīng)常參加體育鍛煉.某健身房從參與健身的會員中隨機抽取100人,對其每周參與健身的天數(shù)和2019年在該健身房所有消費金額(單位:元)進行統(tǒng)計,得到以下統(tǒng)計表及統(tǒng)計圖:

平均每周健身天數(shù)

不大于2

34

不少于5

人數(shù)(男)

20

35

9

人數(shù)(女)

10

20

6

若某人平均每周進行健身天數(shù)不少于5,則稱其為“健身達人”.該健身房規(guī)定消費金額不多于1600元的為普通會員,超過1600元但不超過3200元的為銀牌會員,超過3200元的為金牌會員.

1)已知金牌會員都是健身達人,現(xiàn)從健身達人中隨機抽取2人,求他們均是金牌會員的概率;

2)能否在犯錯誤的概率不超過的前提下認為性別和是否為“健身達人”有關(guān)系?

3)該健身機構(gòu)在2019年年底針對這100位消費者舉辦一次消費返利活動,現(xiàn)有以下兩種方案:

方案一:按分層抽樣從普通會員、銀牌會員和金牌會員中共抽取25位“幸運之星”,分別給予188元,288元,888元的幸運獎勵;

方案二:每位會員均可參加摸獎游戲,游戲規(guī)則如下:摸獎箱中裝有5張形狀大小完全一樣的卡片,其中3張印跑步機圖案、2張印動感單車圖案,有放回地摸三次卡片,每次只能摸一張,若摸到動感單車的總數(shù)為2,則獲得100元獎勵,若摸到動感單車的總數(shù)為3,則獲得200元獎勵,其他情況不給予獎勵.規(guī)定每個普通會員只能參加1次摸獎游戲,每個銀牌會員可參加2次摸獎游戲,每個金牌會員可參加3次摸獎游戲(每次摸獎結(jié)果相互獨立).

請你比較該健身房采用哪一種方案時,在此次消費返利活動中的支出較少,并說明理由.

附:,其中為樣本容量.

0.50

0.25

0.10

0.05

0.010

0.005

0.455

1.323

2.706

3.841

6.636

7.879

查看答案和解析>>

同步練習冊答案