【題目】某市公園內(nèi)的人工湖上有一個(gè)以點(diǎn)為圓心的圓形噴泉,沿湖有一條小徑,在的另一側(cè)建有控制臺(tái),和之間均有小徑連接(小徑均為直路),且,噴泉中心點(diǎn)距離點(diǎn)60米,且連線恰與平行,在小徑上有一拍照點(diǎn),現(xiàn)測(cè)得米, 米,且.
(I)請(qǐng)計(jì)算小徑的長(zhǎng)度;
(Ⅱ)現(xiàn)打算改建控制臺(tái)的位置,其離噴泉盡可能近,在點(diǎn)的位置及大小均不變的前提下,請(qǐng)計(jì)算距離的最小值;
(Ⅲ)一人從小徑一端處向處勻速前進(jìn)時(shí),噴泉恰好同時(shí)開(kāi)啟,噴泉開(kāi)啟分鐘后的水幕是一個(gè)以為圓心,半徑米的圓形區(qū)域(含邊界),此人的行進(jìn)速度是米/分鐘,在這個(gè)人行進(jìn)的過(guò)程中他會(huì)被水幕沾染,試求實(shí)數(shù)的最小值.
【答案】(Ⅰ)千米;(Ⅱ);(Ⅲ)4.
【解析】
分析:(I) 以為坐標(biāo)原點(diǎn), 所在直線為軸,過(guò)且垂直于的直線為軸,建立平面直角坐標(biāo)系,由題意可知,,則AB所在直線即可表示,即可求出A點(diǎn)坐標(biāo),從而得出答案;
(Ⅱ)三點(diǎn)共圓,可求圓的方程為, ,則距離最小值為圓心與C之間的距離減去半徑;
(Ⅲ) 因?yàn)?/span>在的正西方向,且千米,所以. 假設(shè)在時(shí)刻人所在的位置為,所以,則可表示,又在時(shí), ,欲使這個(gè)人行進(jìn)的過(guò)程中會(huì)被水幕沾染,則存在,使得,化簡(jiǎn)即可得出答案.
解析:(I)以為坐標(biāo)原點(diǎn), 所在直線為軸,過(guò)且垂直于的直線為軸,建立如圖所示的平面直角坐標(biāo)系,由千米, ,可知,直線的方程為,.所以直線的方程為,令,得,所以,千米;
(Ⅱ) 三點(diǎn)共圓,可求圓的方程為,,則距離最小值為 (此時(shí)點(diǎn)為直線與點(diǎn)及坐標(biāo)原點(diǎn)之間劣弧的交點(diǎn));
(Ⅲ)因?yàn)?/span>在的正西方向,且千米,所以.人從行駛到所需要的時(shí)間為 (分鐘),假設(shè)在時(shí)刻人所在的位置為,則千米,所以,則 .
又在時(shí), ,欲使這個(gè)人行進(jìn)的過(guò)程中會(huì)被水幕沾染,則存在,使得,即成立,所以存在,使得成立,
當(dāng)時(shí), ,當(dāng)且僅當(dāng),即時(shí)取等號(hào).所以,即實(shí)數(shù)的最小值為4.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知點(diǎn)是直線上一動(dòng)點(diǎn),PA、PB是圓的兩條切線,A、B為切點(diǎn),若四邊形PACB面積的最小值是2,則的值是
A. B. C. 2 D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知α∈,且sin +cos = .
(1)求cos α的值;
(2)若sin(α-β)=- ,β∈,求cos β的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐中,底面,,是的中點(diǎn).
(1)求證:平面;
(2)求證:平面平面;
(3)若與平面所成角為,求的長(zhǎng).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖①,有一個(gè)長(zhǎng)方體形狀的敞口玻璃容器,底面是邊長(zhǎng)為20cm的正方形,高為30cm,內(nèi)有20cm深的溶液.現(xiàn)將此容器傾斜一定角度(圖②),且傾斜時(shí)底面的一條棱始終在桌面上(圖①、②均為容器的縱截面).
(1)要使傾斜后容器內(nèi)的溶液不會(huì)溢出,角的最大值是多少?
(2)現(xiàn)需要倒出不少于的溶液,當(dāng)時(shí),能實(shí)現(xiàn)要求嗎?請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在正四面體A—BCD中,棱長(zhǎng)為4,M是BC的中點(diǎn),
點(diǎn)P在線段AM上運(yùn)動(dòng)(P不與A、M重合),過(guò)
點(diǎn)P作直線l⊥平面ABC,l與平面BCD交于點(diǎn)Q,
給出下列命題:
①BC⊥平面AMD ②Q點(diǎn)一定在直線DM上
③
其中正確的是( )
A.①②B.①③C.②③D.①②③
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)列是公差為正數(shù)的等差數(shù)列,其前項(xiàng)和為,
且,
(1)求數(shù)列的通項(xiàng)公式.
(2)設(shè)數(shù)列滿足,
①求數(shù)列的通項(xiàng)公式;
②是否存在正整數(shù),使得,,成等差數(shù)列?若存在,求出的值;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓: 的離心率為,點(diǎn)為左焦點(diǎn),過(guò)點(diǎn)作軸的垂線交橢圓于、兩點(diǎn),且.
(1)求橢圓的方程;
(2)在圓上是否存在一點(diǎn),使得在點(diǎn)處的切線與橢圓相交于、兩點(diǎn)滿足?若存在,求的方程;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com