【題目】某高中三年級有AB兩個班,各有50名同學(xué),這兩個班參加能力測試,成績統(tǒng)計結(jié)果如表:

AB班成績的頻數(shù)分布表

分組

[50,60)

[6070)

[70,80)

[8090)

[90,100]

A班頻數(shù)

4

8

23

9

6

B班頻數(shù)

7

12

13

10

8

1)試估計AB兩個班的平均分;

2)統(tǒng)計學(xué)中常用M值作為衡量總體水平的一種指標(biāo),已知M與分?jǐn)?shù)t的關(guān)系式為:M.

分別求這兩個班學(xué)生成績的M總值,并據(jù)此對這兩個班的總體水平作簡單評價.

【答案】(1)A=76B=75 (2)見解析

【解析】

1)取每組區(qū)間的中值作為該組的成績,求出成績總和,即可得出結(jié)論;

2)分別統(tǒng)計出兩個班在[5060),[60,80) ,[80,100]的人數(shù),結(jié)合與分?jǐn)?shù)的關(guān)系,即可求解.

(1)估計A班平均分為:

(4×55+8×65+23×75+9×85+6×95)=76

B班平均分為:(7×55+12×65+13×75+10×85+8×95)=75.

(2)A班學(xué)生成績的M總值為: MA=2×4+2×(8+23)+4×(9+6)=114,

B班學(xué)生成績的M總值為: MB=2×7+2×(12+13)+4×(10+8)=108,

MA>MB,∴A班總體水平好于B.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】對于定義在上的函數(shù),有下述命題:①若是奇函數(shù),則的圖象關(guān)于點對稱;②函數(shù)的圖象關(guān)于直線對稱,則為偶函數(shù);③若對,有,則2的一個周期;④函數(shù)的圖象關(guān)于直線對稱.其中正確的命題是______.(寫出所有正確命題的序號)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某公司生產(chǎn)的某批產(chǎn)品的銷售量萬件(生產(chǎn)量與銷售量相等)與促銷費用萬元滿足(其中,為正常數(shù)).已知生產(chǎn)該產(chǎn)品還需投入成本萬元(不含促銷費用),產(chǎn)品的銷售價格定為件.

1)將該產(chǎn)品的利潤萬元表示為促銷費用萬元的函數(shù);

2)促銷費用投入多少萬元時,該公司的利潤最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某電器專賣店銷售某種型號的空調(diào),記第天(,)的日銷售量為(單位;臺).函數(shù)圖象中的點分別在兩條直線上,如圖,該兩直線交點的橫坐標(biāo)為,已知時,函數(shù)

1)當(dāng)時,求函數(shù)的解析式;

2)求的值及該店前天此型號空調(diào)的銷售總量;

3)按照經(jīng)驗判斷,當(dāng)該店此型號空調(diào)的銷售總量達(dá)到或超過臺,且日銷售量仍持續(xù)增加時,該型號空調(diào)開始旺銷,問該店此型號空調(diào)銷售到第幾天時,才可被認(rèn)為開始旺銷?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】

(本題滿分15分)已知m1,直線,

橢圓,分別為橢圓的左、右焦點.

)當(dāng)直線過右焦點時,求直線的方程;

)設(shè)直線與橢圓交于兩點,,

的重心分別為.若原點在以線段

為直徑的圓內(nèi),求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四棱錐PABC中,PA⊥底面ABCD,AD∥BC,AB=AD=AC=3,PA=BC=4,M為線段AD上一點,AM=2MD,NPC的中點.

)證明MN∥平面PAB;

)求直線AN與平面PMN所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列滿足:,,且對一切,均有

1)求證:數(shù)列為等差數(shù)列,并求數(shù)列的通項公式;

2)求數(shù)列的前項和

3)設(shè),記數(shù)列的前項和為,求正整數(shù),使得對任意,均有

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,等腰梯形中,,ECD中點,將沿AE折到的位置.

(1)證明:;

(2)當(dāng)折疊過程中所得四棱錐體積取最大值時,求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知正項數(shù)列,滿足:對任意正整數(shù),都有,,成等差數(shù)列,,成等比數(shù)列,且,

)求證:數(shù)列是等差數(shù)列;

)求數(shù)列,的通項公式;

)設(shè)=++…+,如果對任意的正整數(shù),不等式恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案