精英家教網 > 高中數學 > 題目詳情

【題目】設橢圓的左右焦點分別為,,點滿足

() 求橢圓的離心率;

() 設直線與橢圓相交于兩點,若直線與圓相交于,兩點,且,求橢圓的方程.

【答案】() ()

【解析】

試題分析:)直接利用|PF2|=|F1F2|,對應的方程整理后即可求橢圓的離心率e;()先把直線PF2與橢圓方程聯(lián)立求出A,B兩點的坐標以及對應的|AB|兩點,進而求出|MN|,再利用弦心距,弦長以及圓心到直線的距離之間的等量關系,即可求橢圓的方程

試題解析:()設

因為,則,,

,有,即(舍去)或

所以橢圓的離心率為

() 解.因為,所以,.所以橢圓方程為

直線的斜率,則直線的方程為

兩點的坐標滿足方程組

消去并整理得.則,

于是 不妨設

所以

于是

圓心到直線的距離,

因為,所以,即

解得(舍去),或.于是,

所以橢圓的方程為

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】選修4-4:坐標系與參數方程

已知直線的參數方程為為參數,以坐標原點為極點,軸的正半軸為極軸建立極坐標系,曲線的極坐標方程為,且曲線的左焦點在直線

1若直線與曲線交于兩點,求的值;

2求曲線的內接矩形的周長的最大值

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知動圓過定點,且與直線相切.

(1)求動圓圓心的軌跡的方程;

(2)過(1)中軌跡上的點作兩條直線分別與軌跡相交于兩點,試探究:當直線的斜率存在且傾斜角互補時,直線的斜率是否為定值?若是,求出這個定值;若不是,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】設橢圓)的右焦點為右頂點為,已知,其中為坐標原點為橢圓的離心率

(1)求橢圓的方程;

(2)設過點的直線與橢圓交于點不在軸上),垂直于的直線與交于點,軸交于點,,,求直線的斜率的取值范圍

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,在四棱錐中,底面為直角梯形,,,平面底面,的中點,是棱上的點,,,

1求證:平面平面;

2,求二面角的大小

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某企業(yè)生產AB兩種產品,生產1A種產品需要煤4噸、電18千瓦;生產1B種產品需要煤1噸、電15千瓦。現因條件限制,該企業(yè)僅有煤10,并且供電局只能供電66千瓦,若生產1A種產品的利潤為10000元;生產1B種產品的利潤是5000元,試問該企業(yè)如何安排生產,才能獲得最大利潤?

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數

I若函數在點處的切線方程為,求的值;

II若在區(qū)間上,函數的圖象恒在直線下方,求的取值范圍

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數

1時,求函數的單調區(qū)間;

2是否存在實數,使恒成立,若存在,求出實數的取值范圍;若不存在,說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】直線過點,與軸,軸的正半軸分布交于兩點,為坐標原點.

(1)當直線的斜率時,求的外接圓的面積;

(2)當的面積最小時,求直線的方程.

查看答案和解析>>

同步練習冊答案