【題目】已知函數(shù).
(1)當(dāng)時(shí),求函數(shù)的單調(diào)區(qū)間;
(2)是否存在實(shí)數(shù),使恒成立,若存在,求出實(shí)數(shù)的取值范圍;若不存在,說明理由.
【答案】(1)當(dāng)時(shí),函數(shù)的單調(diào)遞增區(qū)間為和,單調(diào)遞減區(qū)間為,當(dāng)時(shí),函數(shù)的單調(diào)遞增區(qū)間為;(2).
【解析】
試題分析:(1)借助題設(shè)條件運(yùn)用導(dǎo)數(shù)的知識;(2)借助題設(shè)運(yùn)用導(dǎo)數(shù)的知識求解探求.
試題解析:
(1)函數(shù)的定義域?yàn)?/span>,
,
當(dāng)時(shí),
由,得,或,
由,得,
故函數(shù)的單調(diào)遞增區(qū)間為和,單調(diào)遞減區(qū)間為,
當(dāng)時(shí),恒成立,
故函數(shù)的單調(diào)遞增區(qū)間為.
(2)恒成立等價(jià)于恒成立,
令,
當(dāng)時(shí),即當(dāng)時(shí),,
故在內(nèi)不能恒成立,
當(dāng)時(shí),即當(dāng)時(shí),則,
故在內(nèi)不能恒成立,
當(dāng)時(shí),即當(dāng)時(shí),
,
由解得,
當(dāng)時(shí),;
當(dāng)時(shí),.
所以,
解得.
綜上,當(dāng)時(shí),在內(nèi)恒成立,即恒成立,
所以實(shí)數(shù)的取值范圍是.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下表提供了某廠節(jié)能降耗技術(shù)改造后生產(chǎn)甲產(chǎn)品過程中記錄的產(chǎn)量x(噸)與相應(yīng)的生產(chǎn)能耗y(噸標(biāo)準(zhǔn)煤)的幾組對照數(shù)據(jù).
x | 3 | 4 | 5 | 6 |
y | 2.5 | 3 | 4 | 4.5 |
(1)請畫出上表數(shù)據(jù)的散點(diǎn)圖.
(2)請根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出y關(guān)于x的線性回歸方程.
(3)已知該廠技改前100噸甲產(chǎn)品的生產(chǎn)能耗為90噸標(biāo)準(zhǔn)煤.試根據(jù)(2)求出的線性回歸方程,預(yù)測生產(chǎn)100噸甲產(chǎn)品的生產(chǎn)能耗比技改前降低多少噸標(biāo)準(zhǔn)煤.
(參考數(shù)值:3×2.5+4×3+5×4+6×4.5=66.5)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)橢圓的左右焦點(diǎn)分別為,,點(diǎn)滿足.
(Ⅰ) 求橢圓的離心率;
(Ⅱ) 設(shè)直線與橢圓相交于兩點(diǎn),若直線與圓相交于,兩點(diǎn),且,求橢圓的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某公司2016年前三個月的利潤(單位:百萬元)如下:
月份 | |||
利潤 |
(1)求利潤關(guān)于月份的線性回歸方程;
(2)試用(1)中求得的回歸方程預(yù)測月和月的利潤;
(3)試用(1)中求得的回歸方程預(yù)測該公司2016年從幾月份開始利潤超過萬?
相關(guān)公式: , .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直線被圓所截得的弦長為8.
(1)求圓的方程;
(2)若直線與圓切于點(diǎn),當(dāng)直線與軸正半軸,軸正半軸圍成的三角形面積最小時(shí),求點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為原點(diǎn)的直角坐標(biāo)系中,點(diǎn)為的直角頂點(diǎn),已知,且點(diǎn)的縱坐標(biāo)大于0.
(1)求的坐標(biāo);
(2)求圓關(guān)于直線對稱的圓的方程;在直線上是否存在點(diǎn),過點(diǎn)的任意一條直線如果和圓圓都相交,則該直線被兩圓截得的線段長相等,如果存在求出點(diǎn)的坐標(biāo),如果不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)若曲線在和處的切線互相平行,求的值;
(2)求的單調(diào)區(qū)間;
(3)設(shè),若對任意,均存在,使得,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(Ⅰ)若為的極值點(diǎn),求實(shí)數(shù)的值;
(Ⅱ)若在上為增函數(shù),求實(shí)數(shù)的取值范圍;
(III)當(dāng)時(shí),方程有實(shí)根,求實(shí)數(shù)的最大值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com