【題目】直線過點,與軸,軸的正半軸分布交于兩點,為坐標原點.

(1)當(dāng)直線的斜率時,求的外接圓的面積;

(2)當(dāng)的面積最小時,求直線的方程.

【答案】(1);(2)

【解析】

試題分析:對問題(1),首先根據(jù)題目條件求出直線的方程,在此基礎(chǔ)上求出直角三角形的斜邊長,即的外接圓的直徑,進而可求出的外接圓的面積;對于問題(2),首先設(shè)出直線的方程,并用斜率表示出的面積,再結(jié)合基本不等式可求出的面積最小時斜率的值,進而可求得直線的方程.

試題解析:(1)由題知直線的方程為,即.............2分

可知,..................3分

是直角三角形,為斜邊,故的外接圓半徑..............4分

所以外接圓的面積......................5分

(2)由題知直線的斜率存在,且,設(shè)直線,

;令,......................7分

由勾函數(shù)知,當(dāng)時,最小..................9分

故直線的方程為,即....................10分

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)橢圓的左右焦點分別為,點滿足

() 求橢圓的離心率

() 設(shè)直線與橢圓相交于兩點,若直線與圓相交于,兩點,且,求橢圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為原點的直角坐標系中,點的直角頂點,已知,且點的縱坐標大于0.

(1)的坐標;

(2)求圓關(guān)于直線對稱的圓的方程;在直線上是否存在點,過點的任意一條直線如果和圓都相交,則該直線被兩圓截得的線段長相等,如果存在求出點的坐標,如果不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

1)若曲線處的切線互相平行,求的值;

2)求的單調(diào)區(qū)間;

3)設(shè),若對任意,均存在,使得,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】給出下列結(jié)論:

動點分別到兩定點(-3,0)、(3,0) 連線的斜率之乘積為,設(shè)的軌跡為曲線,分別為曲線的左、右焦點,則下列說法中:

(1)曲線的焦點坐標為;

(2)當(dāng)時,的內(nèi)切圓圓心在直線上;

(3)若,則;

(4)設(shè),則的最小值為;

其中正確的序號是:_____________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的焦距為,左、右頂點分別為、,是橢圓上一點, 記直線、的斜率為、,且有.

(1)求橢圓的方程;

(2)若直線與橢圓交于兩點, 、為直徑的圓經(jīng)過原點, 且線段的垂直平分線在軸上的截距為,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】公司從某大學(xué)招收畢業(yè)生,經(jīng)過綜合測試,錄用了14名男生和6名女生,這20名畢業(yè)生的測試成績?nèi)缜o葉圖所示(單位:分),公司規(guī)定:成績在180分以上者到甲部門工作;180分以下者到乙部門工作.

(1)求男生成績的中位數(shù)及女生成績的平均值;

(2)如果用分層抽樣的方法從甲部門人選和乙部門人選中共選取5人,再從這5人中選2人,那么至少有一人是甲部門人選的概率是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

的極值點,求實數(shù)的值;

上為增函數(shù),求實數(shù)的取值范圍;

III當(dāng)時,方程有實根,求實數(shù)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在三棱錐中,側(cè)棱垂直于底面,分別是的中點

(1)求證: 平面平面;

(2)求證: 平面;

(3)求三棱錐體積

查看答案和解析>>

同步練習(xí)冊答案