精英家教網 > 高中數學 > 題目詳情

【題目】已知動圓過定點,且與直線相切.

(1)求動圓圓心的軌跡的方程;

(2)過(1)中軌跡上的點作兩條直線分別與軌跡相交于兩點,試探究:當直線的斜率存在且傾斜角互補時,直線的斜率是否為定值?若是,求出這個定值;若不是,請說明理由.

【答案】(1);(2)

【解析】

試題分析:(1)由題及拋物線的定義知,軌跡是以定點為焦點,直線為準線的拋物線,即可求解點的軌跡方程;(2)設直線的斜率為,則直線的斜率為,代入拋物線的方程,求出的縱坐標,表示直線的斜率,即可求得結論.

試題解析:(1)由題及拋物線的定義知,軌跡是以定點為焦點,直線為準線的拋物線,,,即軌跡..................4分

(2)由題知,

,

......................6分

設直線的斜率為,則直線的斜率為,

,則由,

,,

同理得.....................10分

,

即直線的斜率為定值..........................12分

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】已知數列滿足:對于任意時,,

(1)若,求證:為等比數列;

(2)若

求數列的通項公式;

是否存在,使得為數列中的項?若存在,求出所有滿足條件的的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,在直三棱柱中,點分別為線段的中點.

(1)求證:平面;

(2)若在邊上,,求證:.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】下表提供了某廠節(jié)能降耗技術改造后生產甲產品過程中記錄的產量x(噸)與相應的生產能耗y(噸標準煤)的幾組對照數據.

x

3

4

5

6

y

2.5

3

4

4.5

(1)請畫出上表數據的散點圖.

(2)請根據上表提供的數據,用最小二乘法求出y關于x的線性回歸方程.

(3)已知該廠技改前100噸甲產品的生產能耗為90噸標準煤.試根據(2)求出的線性回歸方程,預測生產100噸甲產品的生產能耗比技改前降低多少噸標準煤.

(參考數值:3×2.5+4×3+5×4+6×4.5=66.5)

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知橢圓的一個焦點與短軸的兩個端點是正三角形的三個項點,點在橢圓上.

(1)求橢圓的方程;

(2)設不過原點且斜率為的直線與橢圓交于不同的兩點,線段的中點為,直線與橢圓交于,證明:

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,四邊形ABCD為矩形,DA⊥平面ABE,AEEBBC=2,

BF⊥平面ACE,且點FCE上.

(1)求證:AEBE;

(2)求三棱錐DAEC的體積;

(3)設點M在線段AB上,且滿足AM=2MB,試在線段CE上確定一點N,

使得MN∥平面DAE.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,某生態(tài)園將一三角形地塊的一角開辟為水果園種植桃樹,已知角,的長度均大于米,現在邊界處建圍墻,在處圍竹籬笆

1若圍墻 長度為米,如何圍可使得三角形地塊的面積最大?

2已知段圍墻高米,段圍墻高米,造價均為每平方米若圍圍墻用了元,問如何圍可使竹籬笆用料最?

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】設橢圓的左右焦點分別為,,點滿足

() 求橢圓的離心率;

() 設直線與橢圓相交于兩點,若直線與圓相交于兩點,且,求橢圓的方程.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】為原點的直角坐標系中,點的直角頂點,已知,且點的縱坐標大于0.

(1)的坐標

(2)求圓關于直線對稱的圓的方程;在直線上是否存在點,過點的任意一條直線如果和圓都相交,則該直線被兩圓截得的線段長相等,如果存在求出點的坐標,如果不存在,請說明理由.

查看答案和解析>>

同步練習冊答案