【題目】在極坐標(biāo)系下,已知圓Oρ=cosθ+sinθ和直線(xiàn)l

1)求圓O和直線(xiàn)l的直角坐標(biāo)方程;

2)當(dāng)θ∈0,π)時(shí),求直線(xiàn)l與圓O公共點(diǎn)的極坐標(biāo).

【答案】1x﹣y+1=0.(2

【解析】

試題(1)圓O的方程即ρ2=ρcosθ+ρsinθ,可得圓O 的直角坐標(biāo)方程為:x2+y2=x+y,即x2+y2﹣x﹣y=0

2)由,可得直線(xiàn)l與圓O公共點(diǎn)的直角坐標(biāo)為(0,1),由此求得線(xiàn)l與圓O公共點(diǎn)的極坐標(biāo).

解:(1)圓Oρ=cosθ+sinθ,即ρ2=ρcosθ+ρsinθ,

故圓O 的直角坐標(biāo)方程為:x2+y2=x+y,即x2+y2﹣x﹣y=0

直線(xiàn)l,即ρsinθ﹣ρcosθ=1,則直線(xiàn)的直角坐標(biāo)方程為:y﹣x=1,即x﹣y+1=0

2)由,可得,直線(xiàn)l與圓O公共點(diǎn)的直角坐標(biāo)為(0,1),

故直線(xiàn)l 與圓O 公共點(diǎn)的一個(gè)極坐標(biāo)為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

(1)若,求實(shí)數(shù)取值的集合;

(2)證明:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】是定義在上且滿(mǎn)足如下條件的函數(shù)組成的集合:

①對(duì)任意的,都有;

②存在常數(shù),使得對(duì)任意的、,都有.

1)設(shè)函數(shù),判斷函數(shù)是否屬于?并說(shuō)明理由;

2)已知函數(shù),求證:方程的解至多一個(gè);

3)設(shè)函數(shù),,且,試求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】(1)閱讀以下案例,利用此案例的想法化簡(jiǎn)

案例:考察恒等式左右兩邊的系數(shù).

因?yàn)橛疫?/span>,

所以,右邊的系數(shù)為

而左邊的系數(shù)為,

所以

(2)求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在直角坐標(biāo)系xOy中,圓C1和C2的參數(shù)方程分別是(φ為參數(shù))和(φ為參數(shù)),以O(shè)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系.

(1)求圓C1和C2的極坐標(biāo)方程;

(2)射線(xiàn)OM:θ=a與圓C1的交點(diǎn)為O、P,與圓C2的交點(diǎn)為O、Q,求|OP||OQ|的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為迎接2022年北京冬季奧運(yùn)會(huì),普及冬奧知識(shí),某校開(kāi)展了冰雪答題王冬奧知識(shí)競(jìng)賽活動(dòng).現(xiàn)從參加冬奧知識(shí)競(jìng)賽活動(dòng)的學(xué)生中隨機(jī)抽取了100名學(xué)生,將他們的比賽成績(jī)(滿(mǎn)分為100分)分為6組:,,,,,,得到如圖所示的頻率分布直方圖.

1)求的值;

2)估計(jì)這100名學(xué)生的平均成績(jī)(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值為代表);

3)在抽取的100名學(xué)生中,規(guī)定:比賽成績(jī)不低于80分為優(yōu)秀,比賽成績(jī)低于80分為非優(yōu)秀.請(qǐng)將下面的2×2列聯(lián)表補(bǔ)充完整,并判斷是否有99.9%的把握認(rèn)為比賽成績(jī)是否優(yōu)秀與性別有關(guān)?

優(yōu)秀

非優(yōu)秀

合計(jì)

男生

40

女生

50

合計(jì)

100

參考公式及數(shù)據(jù):

0.10

0.05

0.025

0.010

0.005

0.001

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知是橢圓的兩個(gè)焦點(diǎn),是橢圓上一點(diǎn),當(dāng)時(shí),有.

(1)求橢圓的標(biāo)準(zhǔn)方程;

(2)設(shè)過(guò)橢圓右焦點(diǎn)的動(dòng)直線(xiàn)與橢圓交于兩點(diǎn),試問(wèn)在鈾上是否存在與不重合的定點(diǎn),使得恒成立?若存在,求出定點(diǎn)的坐標(biāo),若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】“回文數(shù)”是指從左到右與從右到左讀都一樣的正整數(shù),如22,121,3553等.顯然2位“回文數(shù)”共9個(gè):112233,…,99.現(xiàn)從9個(gè)不同2位“回文數(shù)”中任取1個(gè)乘以4,其結(jié)果記為X;從9個(gè)不同2位“回文數(shù)”中任取2個(gè)相加,其結(jié)果記為Y

1)求X為“回文數(shù)”的概率;

2)設(shè)隨機(jī)變量表示X,Y兩數(shù)中“回文數(shù)”的個(gè)數(shù),求的概率分布和數(shù)學(xué)期望

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在對(duì)某漁業(yè)產(chǎn)品的質(zhì)量調(diào)研中,從甲、乙兩地出產(chǎn)的該產(chǎn)品中各隨機(jī)抽取10件,測(cè)量該產(chǎn)品中某種元素的含量(單位:毫克).下表是測(cè)量數(shù)據(jù)的莖葉圖:

規(guī)定:當(dāng)產(chǎn)品中的此種元素含量毫克時(shí)為優(yōu)質(zhì)品.

1)試用上述樣本數(shù)據(jù)估計(jì)甲、乙兩地該產(chǎn)品的優(yōu)質(zhì)品率(優(yōu)質(zhì)品件數(shù)/總件數(shù));

2)從乙地抽出的上述10件產(chǎn)品中,隨機(jī)抽取3件,求抽到的3件產(chǎn)品中優(yōu)質(zhì)品數(shù)的分布列及數(shù)學(xué)期望.

查看答案和解析>>

同步練習(xí)冊(cè)答案