【題目】已知圓x2+y2=4上一定點A(2,0),B(1,1)為圓內(nèi)一點,P,Q為圓上的動點.
(1)求線段AP中點的軌跡方程;
(2)若∠PBQ=90°,求線段PQ中點的軌跡方程.
【答案】
(1)解:設AP中點為M(x,y),
由中點坐標公式可知,P點坐標為(2x﹣2,2y)
∵P點在圓x2+y2=4上,∴(2x﹣2)2+(2y)2=4.
故線段AP中點的軌跡方程為(x﹣1)2+y2=1
(2)解:設PQ的中點為N(x,y),
在Rt△PBQ中,|PN|=|BN|,
設O為坐標原點,則ON⊥PQ,
所以|OP|2=|ON|2+|PN|2=|ON|2+|BN|2,
所以x2+y2+(x﹣1)2+(y﹣1)2=4.
故線段PQ中點的軌跡方程為x2+y2﹣x﹣y﹣1=0.
【解析】(1)設出AP的中點坐標,利用中點坐標公式求出P的坐標,據(jù)P在圓上,將P坐標代入圓方程,求出中點的軌跡方程.(2)利用直角三角形的中線等于斜邊長的一半得到|PN|=|BN|,利用圓心與弦中點連線垂直弦,利用勾股定理得到
|OP|2=|ON|2+|PN|2 , 利用兩點距離公式求出動點的軌跡方程.
科目:高中數(shù)學 來源: 題型:
【題目】若直線l1:y=x,l2:y=x+2與圓C:x2+y2﹣2mx﹣2ny=0的四個交點把圓C分成的四條弧長相等,則m=( )
A.0或1
B.0或﹣1
C.1或﹣1
D.0
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知點A(0,2)為圓C:x2+y2﹣2ax﹣2ay=0(a>0)外一點,圓C上存在點P使得∠CAP=45°,則實數(shù)a的取值范圍是( )
A.(0,1)
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知 , .
(1)當n=1,2,3時,分別比較f(n)與g(n)的大小(直接給出結論);
(2)由(1)猜想f(n)與g(n)的大小關系,并證明你的結論.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】函數(shù)f(x)=ln(3﹣x)(x+1)的定義域為( )
A.[﹣1,3]
B.(﹣1,3)
C.(﹣∞,﹣3)∪(1,+∞)
D.(﹣∞,﹣1)∪(3,+∞)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知數(shù)列是公差為正數(shù)的等差數(shù)列,其前項和為,且, .
(1)求數(shù)列的通項公式;
(2)數(shù)列滿足, .①求數(shù)列的通項公式;②是否存在正整數(shù), (),使得, , 成等差數(shù)列?若存在,求出, 的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知f(x)=2sin4x+2cos4x+cos22x﹣3.
(1)求函數(shù)f(x)的最小正周期.
(2)求函數(shù)f(x)在閉區(qū)間[ ]上的最小值并求當f(x)取最小值時,x的取值集合.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com