【題目】已知: 、 、 是同一平面內(nèi)的三個向量,其中 =(1,2)
(1)若| |=2 ,且 ∥ ,求 的坐標(biāo);
(2)若| |= ,且 +2 與2 ﹣ 垂直,求v與 的夾角θ.
【答案】
(1)解:設(shè) ,
∵| |=2 ,且 ∥ ,
∴ ,
解得 或 ,
故 或
(2)解:∵ ,
∴ ,
即 ,
∴ ,
整理得 ,
∴ ,
又∵θ∈[0,π],∴θ=π.
【解析】(1)設(shè) ,由| |=2 ,且 ∥ ,知 ,由此能求出 的坐標(biāo).(2)由 ,知 ,整理得 ,故 ,由此能求出 與 的夾角θ
【考點精析】掌握數(shù)量積表示兩個向量的夾角和數(shù)量積判斷兩個平面向量的垂直關(guān)系是解答本題的根本,需要知道設(shè)、都是非零向量,,,是與的夾角,則;若平面的法向量為,平面的法向量為,要證,只需證,即證;即:兩平面垂直兩平面的法向量垂直.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=Asin(ωx+φ),x∈R(其中A>0,ω>0,0<φ< )的圖象與x軸的交點中,相鄰兩個交點之間的距離為 ,且圖象上一個最高點為M( ,3).
(1)求f(x)的解析式;
(2)先把函數(shù)y=f(x)的圖象向左平移 個單位長度,然后再把所得圖象上各點的橫坐標(biāo)伸長到原來的2倍(縱坐標(biāo)不變),得到函數(shù)y=g(x)的圖象,試寫出函數(shù)y=g(x)的解析式.
(3)在(2)的條件下,若總存在x0∈[﹣ , ],使得不等式g(x0)+2≤log3m成立,求實數(shù)m的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)f(x)=4cos2x﹣4 sinxcosx的最小正周期為π(>0).
(1)求的值;
(2)若f(x)的定義域為[﹣ , ],求f(x)的最大值與最小值及相應(yīng)的x的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=sin(ωx+)(ω>0,0≤≤π)為偶函數(shù),其圖象上相鄰的兩個最高點之間的距離為2π.
(1)求f(x)的解析式;
(2)若 ,求 的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù).
(Ⅰ)若,求在區(qū)間[-1,2]上的取值范圍;
(Ⅱ)若對任意, 恒成立,記,求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】有甲、乙兩個班級進(jìn)行數(shù)學(xué)考試,按照大于等于85分為優(yōu)秀,85分以下為非優(yōu)秀統(tǒng)計成績后,得到如下的列聯(lián)表.
已知從全部105人中隨機抽取1人為優(yōu)秀的概率為.
(1)請完成上面的列聯(lián)表:若按的可靠性要求,根據(jù)列聯(lián)表的數(shù)據(jù),能否認(rèn)為“成績與班級有關(guān)系”;
(2)若按下面的方法從甲班優(yōu)秀的學(xué)生中抽取一人:把甲班優(yōu)秀的10名學(xué)生從2到11進(jìn)行編號,先后兩次拋擲一枚均勻的骰子,出現(xiàn)的點數(shù)之和為被抽取人的序號.試求抽到10號的概率.
附:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)且
(1)討論的單調(diào)區(qū)間;
(2)若直線的圖象恒在函數(shù)圖象的上方,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某出租車公司響應(yīng)國家節(jié)能減排的號召,已陸續(xù)購買了140輛純電動汽車作為運營車輛,目前我國主流純電動汽車按續(xù)航里程數(shù).(單位:公里)分為3類,即類:,類:, 類:,該公司對這140輛車的行駛總里程進(jìn)行統(tǒng)計,結(jié)果如下表:
類型 | 類 | 類 | 類 |
已行駛總里程不超過10萬公里的車輛數(shù) | 10 | 40 | 30 |
已行駛總里程超過10萬公里的車輛數(shù) | 20 | 20 | 20 |
(1)從這140輛汽車中任取一輛,求該車行駛總里程超過10萬公里的概率;
(2)公司為了了解這些車的工作狀況,決定抽取了14輛車進(jìn)行車況分析,按表中描述的六種情況進(jìn)行分層抽樣,設(shè)從類車中抽取了輛車.
①求的值;
②如果從這輛車中隨機選取兩輛車,求恰有一輛車行駛總里程超過10萬公里的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com