【題目】有甲、乙兩個班級進行數(shù)學考試,按照大于等于85分為優(yōu)秀,85分以下為非優(yōu)秀統(tǒng)計成績后,得到如下的列聯(lián)表.

已知從全部105人中隨機抽取1人為優(yōu)秀的概率為.

(1)請完成上面的列聯(lián)表:若按的可靠性要求,根據(jù)列聯(lián)表的數(shù)據(jù),能否認為“成績與班級有關(guān)系”;

(2)若按下面的方法從甲班優(yōu)秀的學生中抽取一人:把甲班優(yōu)秀的10名學生從2到11進行編號,先后兩次拋擲一枚均勻的骰子,出現(xiàn)的點數(shù)之和為被抽取人的序號.試求抽到10號的概率.

附:

【答案】(1)有的把握(2)

【解析】試題分析:

(1)首先寫出列聯(lián)表,利用公式求得 ,因此有的把握認為“成績與班級有關(guān)系”.

(2)利用題意可知該事件為古典概型,然后利用古典概型公式求得 .

試題解析:

(1)

優(yōu)秀

非優(yōu)秀

總計

甲班

10

45

55

乙班

20

30

50

合計

30

75

105

根據(jù)列聯(lián)表中的數(shù)據(jù),得到

因此有的把握認為“成績與班級有關(guān)系”.

(2)設(shè)“抽到10號”為事件,先后兩次拋擲一枚均勻的骰子,出現(xiàn)的點數(shù)為,則所有的基本事件有、、…、,共6個.事件包含的基本事件有, , ,共3個,

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖, 、分別為直角三角形的直角邊和斜邊的中點,沿折起到的位置,連結(jié)、, 的中點.

1)求證: 平面;(2)求證:平面平面;

3)求證: 平面

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖所示,四邊形中, , , ,將沿折起,使平面平面,構(gòu)成四面體,則在四面體中,下列說法不正確的是( ).

A. 直線直線 B. 直線直線

C. 直線平面 D. 平面平面

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知: 、 是同一平面內(nèi)的三個向量,其中 =(1,2)
(1)若| |=2 ,且 ,求 的坐標;
(2)若| |= ,且 +2 與2 垂直,求v與 的夾角θ.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下列命題正確的是(
A.若 ,則 =0
B.若 = ,則 =
C.若 , ,則
D.若 是單位向量,則 =1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在四棱柱中,底面,底面為菱形,交點,已知,

(I)求證:平面

(II)在線段上是否存在一點,使得平面,如果存在,求的值,如果不存在,請說明理由.

(III)設(shè)點內(nèi)(含邊界),且,求所有滿足條件的點構(gòu)成的圖形,并求的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

(Ⅰ)的最小正周期和單調(diào)遞增區(qū)間;

(Ⅱ)已知ab,c是△ABC三邊長,且fC)=2,△ABC的面積S=,c=7.求角Cab的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】將函數(shù)y=sin2x(x∈R)圖象上所有的點向左平移 個單位長度,所得圖象的函數(shù)解析式為

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知是首項為19,公差為-2的等差數(shù)列,的前項和

1求通項;

2設(shè)是首項為1公比為3的等比數(shù)列,求數(shù)列的通項公式及其前項和

查看答案和解析>>

同步練習冊答案