【題目】已知等差數(shù)列的公差,數(shù)列滿足,集合.
(1)若,求集合;
(2)若,求使得集合恰好有兩個元素;
(3)若集合恰好有三個元素:,是不超過7的正整數(shù),求的所有可能的值.
【答案】(1);(2)或;(3)
【解析】
(1)根據(jù)正弦函數(shù)周期性的特點,可知數(shù)列周期為,從而得到;(2)恰好有兩個元素,可知或者,求解得到的取值;(3)依次討論的情況,當時,均可得到符合題意的集合;當時,對于,均無法得到符合題意的集合,從而通過討論可知.
(1), ,,
,,,
由周期性可知,以為周期進行循環(huán)
(2),,
恰好有兩個元素
或
即或
或
(3)由恰好有個元素可知:
當時,,集合,符合題意;
當時,,
或
因為為公差的等差數(shù)列,故
又,故
當時,如圖取,,符合條件
當時,,
或
因為為公差的等差數(shù)列,故
又,故
當時,如圖取,,符合條件
當時,,
或
因為為公差的等差數(shù)列,故
又,故
當時,如圖取時,,符合條件
當時,,
或
因為為公差的等差數(shù)列,故
又,故
當時,因為對應個正弦值,故必有一個正弦值對應三個點,必然有,即,即,,不符合條件;
當時,因為對應個正弦值,故必有一個正弦值對應三個點,必然有,即,即,不是整數(shù),故不符合條件;
當時,因為對應個正弦值,故必有一個正弦值對應三個點,必然有或
若,即,不是整數(shù),
若,即,不是整數(shù),
故不符合條件;
綜上:
科目:高中數(shù)學 來源: 題型:
【題目】如圖,矩形中,,為邊的中點,沿將折起,點折至處(平面),若為線段的中點,則在折起過程中,下列說法錯誤的是( )
A.始終有平面
B.不存在某個位置,使得面
C.點在某個球面上運動
D.一定存在某個位置,使得異面直線與所成角為
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】△ABC的內(nèi)角A,B,C的對邊分別為a,b,c,且(b+c)tanC=﹣ctanA.
(1)求A;
(2)若b,c=2,點D在BC邊上,且AD=BD,求AD的長.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓的左頂點為,兩個焦點與短軸一個頂點構(gòu)成等腰直角三角形,過點且與x軸不重合的直線l與橢圓交于M,N不同的兩點.
(Ⅰ)求橢圓P的方程;
(Ⅱ)當AM與MN垂直時,求AM的長;
(Ⅲ)若過點P且平行于AM的直線交直線于點Q,求證:直線NQ恒過定點.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知拋物線,其中.點在的焦點的右側(cè),且到的準線的距離是與距離的3倍.經(jīng)過點的直線與拋物線交于不同的兩點,直線與直線交于點,經(jīng)過點且與直線垂直的直線交軸于點.
(1)求拋物線的方程和的坐標;
(2)判斷直線與直線的位置關(guān)系,并說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓的左、右焦點分別為,,直線()與橢圓交于,兩點(點在軸的上方).
(1)若,求的面積;
(2)是否存在實數(shù)使得以線段為直徑的圓恰好經(jīng)過坐標原點?若存在,求出的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】是空氣質(zhì)量的一個重要指標,我國標準采用世衛(wèi)組織設定的最寬限值,即日均值在以下空氣質(zhì)量為一級,在之間空氣質(zhì)量為二級,在以上空氣質(zhì)量為超標.如圖是某地月日到日日均值(單位:)的統(tǒng)計數(shù)據(jù),則下列敘述不正確的是( )
A.從日到日,日均值逐漸降低
B.這天的日均值的中位數(shù)是
C.這天中日均值的平均數(shù)是
D.從這天的日均監(jiān)測數(shù)據(jù)中隨機抽出一天的數(shù)據(jù),空氣質(zhì)量為一級的概率是
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】年月,電影《毒液》在中國上映,為了了解江西觀眾的滿意度,某影院隨機調(diào)查了本市觀看影片的觀眾,現(xiàn)從調(diào)查人群中隨機抽取部分觀眾.并用如圖所示的表格記錄了他們的滿意度分數(shù)(分制),若分數(shù)不低于分,則稱該觀眾為“滿意觀眾”,請根據(jù)下面尚未完成并有局部污損的頻率分布表(如圖所示),解決下列問題.
組別 | 分組 | 頻數(shù) | 頻率 |
第組 | |||
第組 | |||
第組 | |||
第組 | |||
第組 | |||
合計 |
(1)寫出、的值;
(2)畫出頻率分布直方圖,估算中位數(shù);
(3)在選取的樣本中,從滿意觀眾中隨機抽取名觀眾領(lǐng)取獎品,求所抽取的名觀眾中至少有名觀眾來自第組的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知, 是雙曲線的左,右焦點,點在雙曲線上,且,則下列結(jié)論正確的是( )
A. 若,則雙曲線離心率的取值范圍為
B. 若,則雙曲線離心率的取值范圍為
C. 若,則雙曲線離心率的取值范圍為
D. 若,則雙曲線離心率的取值范圍為
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com