【題目】ABC的內(nèi)角AB,C的對(duì)邊分別為a,b,c,且(b+ctanC=﹣ctanA

1)求A;

2)若bc2,點(diǎn)DBC邊上,且ADBD,求AD的長(zhǎng).

【答案】(1)A;(2AD

【解析】

1)在(b+ctanC=﹣ctanA利用同角公式切化弦和正弦定理邊化角可得答案;

2)先用余弦定理求得,然后求得,再在△中用余弦定理求得即可.

1)∵(b+ctanC=﹣ctanA,∴(c,

利用正弦定理邊化角得:(sinB+sinCsinC,∵0Cπ,∴sinC≠0,

∴(sinB+sinC,∴sinBcosA+sinCcosA=﹣sinAcosC,

sinBcosA=﹣(sinAcosC+sinCcosA)=﹣sinA+C)=﹣sinB,

又∵0Bπ,∴sinB≠0,∴cosA=﹣1,∴cosA,又∵0Aπ,∴A;

2)∵A,b,c2,∴由余弦定理得:cosA,

,∴a,∴cosB

∴在三角形ABD中,由余弦定理得:cosB,且BDAD,

,∴AD

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某學(xué)校舉行知識(shí)競(jìng)賽,第一輪選拔共設(shè)有A、B、C、D四個(gè)問(wèn)題,規(guī)則如下:

①每位參加者記分器的初始分均為10分,答對(duì)問(wèn)題A、B、C、D分別加1分、2分、3分、6分,答錯(cuò)任一題減2分;

②每回答一題,記分器顯示累計(jì)分?jǐn)?shù),當(dāng)累計(jì)分?jǐn)?shù)小于8分時(shí),答題結(jié)束,淘汰出局;當(dāng)累計(jì)分?jǐn)?shù)大于或等于14分時(shí),答題結(jié)束,進(jìn)入下一輪;當(dāng)答完四題,累計(jì)分?jǐn)?shù)仍不足14分時(shí),答題結(jié)束,淘汰出局;

③每位參加者按問(wèn)題A、B、C、D順序作答,直至答題結(jié)束.

假設(shè)甲同學(xué)對(duì)問(wèn)題A、B、C、D回答正確的概率依次為、,且各題回答正確與否相互之間沒(méi)有影響.

(1)求甲同學(xué)能進(jìn)入下一輪的概率;

(2)用ξ表示甲同學(xué)本輪答題結(jié)束時(shí)答題的個(gè)數(shù),求ξ的分布列和數(shù)學(xué)期望Εξ.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示的多面體是由一個(gè)直平行六面體被平面所截后得到的,其中,,.

1)求證:平面平面;

2)求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】中,分別為三邊中點(diǎn),將分別沿向上折起,使重合,記為,則三棱錐的外接球表面積的最小值為( )

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知命題p:關(guān)于x的方程xa在(1,+∞)上有實(shí)根;命題q:方程1表示的曲線是焦點(diǎn)在x軸上的橢圓.

1)若p是真命題,求a的取值范圍;

2)若pq是真命題,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】關(guān)于函數(shù),.有下列命題:

①對(duì),恒有成立.

,使得成立.

③“若,則有.”的否命題.

④“若,則有.”的逆否命題.

其中,真命題有_____________.(只需填序號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下圖1,是某設(shè)計(jì)員為一種商品設(shè)計(jì)的平面logo樣式.主體是由內(nèi)而外的三個(gè)正方形構(gòu)成.該圖的設(shè)計(jì)構(gòu)思如圖2,中間正方形的四個(gè)頂點(diǎn),分別在最外圍正方形ABCD的邊上,且分所在邊為ab兩段.設(shè)中間陰影部分的面積為,最內(nèi)正方形的面積為.當(dāng),且取最大值時(shí),定型該logo的最終樣式,則此時(shí)a,b的取值分別為_____________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知等差數(shù)列的公差,數(shù)列滿足,集合.

(1)若,求集合;

(2)若,求使得集合恰好有兩個(gè)元素;

(3)若集合恰好有三個(gè)元素:,是不超過(guò)7的正整數(shù),求的所有可能的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知圓心為的圓經(jīng)過(guò)點(diǎn),且圓心在直線上.

1)求圓的方程;

2)若過(guò)點(diǎn)的直線被圓截得的弦長(zhǎng)為,求直線的方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案