【題目】已知 是雙曲線的左右焦點,點在雙曲線上,且,則下列結(jié)論正確的是( )

A. ,則雙曲線離心率的取值范圍為

B. ,則雙曲線離心率的取值范圍為

C. ,則雙曲線離心率的取值范圍為

D. 則雙曲線離心率的取值范圍為

【答案】C

【解析】, ,,, 時,雙曲線離心率范圍故選C.

【方法點晴】本題主要考查利用雙曲線的簡單性質(zhì)求雙曲線的離心率,屬于中檔題. 求解與雙曲線性質(zhì)有關(guān)的問題時要結(jié)合圖形進行分析,既使不畫出圖形,思考時也要聯(lián)想到圖形,當涉及頂點、焦點、實軸、虛軸、漸近線等雙曲線的基本量時,要理清它們之間的關(guān)系,挖掘出它們之間的內(nèi)在聯(lián)系.求離心率范圍問題應先將 用有關(guān)的一些量表示出來,再利用其中的一些關(guān)系構(gòu)造出關(guān)于的不等式,從而求出的值. 本題是利用焦半徑的范圍構(gòu)造出關(guān)于的不等式,最后解出的范圍.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】某玩具生產(chǎn)公司每天計劃生產(chǎn)衛(wèi)兵、騎兵、傘兵這三種玩具共個,生產(chǎn)一個衛(wèi)兵需分鐘,生產(chǎn)一個騎兵需分鐘,生產(chǎn)一個傘兵需分鐘,已知總生產(chǎn)時間不超過小時,若生產(chǎn)一個衛(wèi)兵可獲利潤元,生產(chǎn)一個騎兵可獲利潤元,生產(chǎn)一個傘兵可獲利潤元.

(1)用每天生產(chǎn)的衛(wèi)兵個數(shù)與騎兵個數(shù)表示每天的利潤(元);

(2)怎么分配生產(chǎn)任務才能使每天的利潤最大,最大利潤是多少?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖所示,正四面體ABCD的外接球的體積為4π,求正四面體的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,已知圓 ,點.

(1)求經(jīng)過點且與圓相切的直線的方程;

(2)過點的直線與圓相交于、兩點, 為線段的中點,求線段長度的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】明天小強要參加班里組織的郊游活動,為了做好參加這次郊游的準備工作,他測算了如下數(shù)據(jù):整理床鋪、收拾攜帶物品8分鐘,洗臉、刷牙7分鐘,煮牛奶15分鐘,吃早飯10分鐘,查公交線路圖9分鐘,給出差在外的父親發(fā)手機短信6分鐘,走到公共汽車站10分鐘,等公共汽車10分鐘.小強粗略地算了一下,總共需要75分鐘,為了趕上7:50的公共汽車,小強決定6:30起床,不幸的是他一下子睡到6:50,請你幫小強安排一下時間,畫出一份郊游出行前時間安排流程圖,使他還能來得及參加此次郊游.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=x|x+a|﹣ lnx.
(1)當a=0時,討論函數(shù)f(x)的單調(diào)性;
(2)若a<0,討論函數(shù)f(x)的極值點.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設f(x)= 則f(f(2))的值為;若f(x)=a有兩個不等的實數(shù)根,則實數(shù)a的取值范圍為

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知拋物線關(guān)于軸對稱,它的頂點在坐標原點,點在拋物線上.

(1)寫出該拋物線的標準方程及其準線方程;

(2)過點作兩條傾斜角互補的直線與拋物線分別交于不同的兩點,求證:直線的斜率是一個定值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】定義:max{a,b}= ,若實數(shù)x,y滿足:|x|≤3,|y|≤3,﹣4x≤y≤ x,則max{|3x﹣y|,x+2y}的取值范圍是(
A.[ ,7]
B.[0,12]
C.[3, ]
D.[0,7]

查看答案和解析>>

同步練習冊答案