【題目】如圖,在多面體中,兩兩垂直,四邊形是邊長為2的正方形,,,且,.
(1)證明:平面;
(2)求二面角的余弦值.
【答案】(1)見解析;(2).
【解析】
(1)連接AE,EG,根據(jù)直線的垂直關(guān)系可得平面及平面,結(jié)合所給邊長及平行關(guān)系可知四邊形是菱形,進而得到,在正方形中平面。
(2)建立空間直角坐標(biāo)系,寫出各個點的坐標(biāo),求得平面的法向量及平面的法向量,即可利用向量的數(shù)量積關(guān)系求得二面角的余弦值。
(1)證明:連接,
因為兩兩垂直,所以平面
因為,所以,又,所以平面
所以,又因為,所以四邊形是菱形,所以
易知四邊形是平行四邊形,所以
在正方形中,,故
又,所以平面
(2)由(1)知兩兩互相垂直,故以為坐標(biāo)原點,以所在直線為軸建立如圖所示的空間直角坐標(biāo)系,
則,,,,,則,,
設(shè)為平面的法向量,
則
令,則,,所以
又因為平面,所以為平面的一個法向量
由圖可知二面角是鈍角,所以二面角的余弦值為.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】一個有限整數(shù)數(shù)列稱為一個“好數(shù)列”,是指對每個均使得等式成立.證明:對任何兩個整數(shù),都存在一個自然數(shù)和一個“好數(shù)列”,滿足.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】甲乙兩人進行圍棋比賽,約定先連勝兩局者直接贏得比賽,若賽完5局仍未出現(xiàn)連勝,則判定獲勝局?jǐn)?shù)多者贏得比賽,假設(shè)每局甲獲勝的概率為,乙獲勝的概率為,各局比賽結(jié)果相互獨立.
求甲在4局以內(nèi)(含4局)贏得比賽的概率;
記為比賽決出勝負(fù)時的總局?jǐn)?shù),求的分布列和均值(數(shù)學(xué)期望).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】首屆中國國際進口博覽會期間,甲、乙、丙三家中國企業(yè)都有意向購買同一種型號的機床設(shè)備,他們購買該機床設(shè)備的概率分別為,且三家企業(yè)的購買結(jié)果相互之間沒有影響,則三家企業(yè)中恰有1家購買該機床設(shè)備的概率是
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
(1)若曲線在點處的切線與直線垂直,求函數(shù)的極值;
(2)設(shè)函數(shù).當(dāng)=時,若區(qū)間[1,e]上存在x0,使得,求實數(shù)的取值范圍.(為自然對數(shù)底數(shù))
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】我國上是世界嚴(yán)重缺水的國家,城市缺水問題較為突出,某市政府為了鼓勵居民節(jié)約用水,計劃在本市試行居民生活用水定額管理,即確定一個合理的居民月用水量標(biāo)準(zhǔn)(噸),用水量不超過的部分按平價收費,超過的部分按議價收費,為了了解全市民月用水量的分布情況,通過抽樣,獲得了100位居民某年的月用水量(單位:噸),將數(shù)據(jù)按照, ,…, 分成9組,制成了如圖所示的頻率分布直方圖.
(Ⅰ)求直方圖中 的值;
(Ⅱ)已知該市有80萬居民,估計全市居民中月均用水量不低于3噸的人數(shù),并說明理由;
(Ⅲ)若該市政府希望使的居民每月的用水量不超過標(biāo)準(zhǔn)(噸),估計的值,并說明理由;
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓()經(jīng)過與兩點.
(1)求橢圓的方程;
(2)過原點的直線與橢圓交于兩點,橢圓上一點滿足,求證: 為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知,的展開式的各二項式系數(shù)的和等于128,
(1)求的值;
(2)求的展開式中的有理項;
(3)求的展開式中系數(shù)最大的項和系數(shù)最小的項.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直三棱柱ABC—A1B1C1中,BC=3,AB=4,AC=CC1=5,M,N分別是A1B,B1C1的中點.
(1)求證:MN//平面ACC1A1;
(2)求點N到平面MBC的距離.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com