【題目】甲乙兩人進(jìn)行圍棋比賽,約定先連勝兩局者直接贏得比賽,若賽完5局仍未出現(xiàn)連勝,則判定獲勝局?jǐn)?shù)多者贏得比賽,假設(shè)每局甲獲勝的概率為,乙獲勝的概率為,各局比賽結(jié)果相互獨(dú)立.

求甲在4局以內(nèi)(含4局)贏得比賽的概率;

為比賽決出勝負(fù)時(shí)的總局?jǐn)?shù),求的分布列和均值(數(shù)學(xué)期望).

【答案】1;(2.

【解析】試題分析:(1)甲在4局以內(nèi)(含4局)贏得比賽的情況有:前2局甲贏;第1局乙贏、第2、3局甲贏;第1局甲贏、第2局乙贏、第3、4局甲贏,從而就可以求出概率.2)根據(jù)題意的可能取值為.

.

.列出分布列表格,就可以求出期望的值.

表示甲在4局以內(nèi)(含4局)贏得比賽, 表示局甲獲勝, 表示局乙獲勝”., .

.

的可能取值為.

.

.

的分布列為


2

3

4

5






所以.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知二次函數(shù)的圖象過(guò)點(diǎn),對(duì)任意滿足,且有最小值為

1)求的解析式;

2)求函數(shù)在區(qū)間[0,1]上的最小值,其中;

3)在區(qū)間[1,3]上,的圖象恒在函數(shù)的圖象上方,試確定實(shí)數(shù)的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】袋中有除顏色外完全相同的紅、黃、白三種顏色的球各一個(gè),從中每次任取1個(gè).有放回地抽取3次,求:

(1)3個(gè)全是紅球的概率. (2)3個(gè)顏色全相同的概率.

(3)3個(gè)顏色不全相同的概率. (4)3個(gè)顏色全不相同的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,拋物線C:x2=2py(p>0)的焦點(diǎn)為F,過(guò)F的直線l交C于A,B兩點(diǎn),交x軸于點(diǎn)D,B到x軸的距離比|BF|小1.
(Ⅰ)求C的方程;
(Ⅱ)若SBOF=SAOD , 求l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在邊長(zhǎng)為4的正方形ABCD的邊上有一點(diǎn)P,沿著折線BCDA由點(diǎn)B(起點(diǎn))向點(diǎn)A(終點(diǎn))運(yùn)動(dòng).設(shè)點(diǎn)P運(yùn)動(dòng)的路程為x,APB的面積為y,yx之間的函數(shù)關(guān)系式用如圖所示的程序框圖給出.

(1)寫(xiě)出程序框圖中①,,③處應(yīng)填充的式子.

(2)若輸出的面積y值為6,則路程x的值為多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】 (a0+a1x+a2x2+…+anxn)dx=x(x+1)n , 則a1+a2+…+an=

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知A(﹣1,0),B(1,0), = + ,| |+| |=4
(1)求P的軌跡E
(2)過(guò)軌跡E上任意一點(diǎn)P作圓O:x2+y2=3的切線l1 , l2 , 設(shè)直線OP,l1 , l2的斜率分別是k0 , k1 , k2 , 試問(wèn)在三個(gè)斜率都存在且不為0的條件下, + )是否是定值,請(qǐng)說(shuō)明理由,并加以證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】2017年3月智能共享單車項(xiàng)目正式登陸某市,兩種車型“小綠車”、“小黃車”采用分時(shí)段計(jì)費(fèi)的方式,“小綠車”每30分鐘收費(fèi)不足30分鐘的部分按30分鐘計(jì)算;“小黃車”每30分鐘收費(fèi)1元不足30分鐘的部分按30分鐘計(jì)算有甲、乙、丙三人相互獨(dú)立的到租車點(diǎn)租車騎行各租一車一次設(shè)甲、乙、丙不超過(guò)30分鐘還車的概率分別為,,,三人租車時(shí)間都不會(huì)超過(guò)60分鐘甲、乙均租用“小綠車”,丙租用“小黃車”.

求甲、乙兩人所付的費(fèi)用之和等于丙所付的費(fèi)用的概率;

2設(shè)甲、乙、丙三人所付的費(fèi)用之和為隨機(jī)變量,求的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知圓C1與圓C2相交于AB兩點(diǎn),

(1)求公共弦AB所在的直線方程;

(2)求圓心在直線上,且經(jīng)過(guò)A、B兩點(diǎn)的圓的方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案