【題目】如圖,在正方體中,若是線段上的動點,則下列結(jié)論不正確的是( )
A. 三棱錐的正視圖面積是定值
B. 異面直線,所成的角可為
C. 異面直線,所成的角為
D. 直線與平面所成的角可為
【答案】D
【解析】
判斷主視圖的底與高是否發(fā)生變化來判斷,利用幾何法以及建立空間坐標系將線線角以及線面角的關(guān)系轉(zhuǎn)化為向量的關(guān)系來判斷,和.
對于,三棱錐的主視圖為三角形,底邊為的長,高為正方體的高,故棱錐的主視圖面積不變,故正確;
對于,分別以,,為坐標軸,以為原點建立空間直角坐標系,設(shè)正方體邊長為1,,,,,
∴,,∴,當時,方程有解, ∴異面直線,所成的角可為,故B正確.
對于,連結(jié),,,則,∵,∴,
又∵,于是平面,∵平面,∴,故C正確;
對于,結(jié)合B中的坐標系,可得面的法向量為,,
所以,令,方程無解,即直線與平面所成的角可為是錯誤的,故選D.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了解市民對某項政策的態(tài)度,隨機抽取了男性市民25人,女性市民75人進行調(diào)查,得到以下的列聯(lián)表:
支持 | 不支持 | 合計 | |
男性 | 20 | 5 | 25 |
女性 | 40 | 35 | 75 |
合計 | 60 | 40 | 100 |
根據(jù)以上數(shù)據(jù),能否有97.5%的把握認為市民“支持政策”與“性別”有關(guān)?
將上述調(diào)查所得的頻率視為概率,現(xiàn)在從所有市民中,采用隨機抽樣的方法抽取4位市民進行長期跟蹤調(diào)查,記被抽取的4位市民中持“支持”態(tài)度的人數(shù)為X,求X的分布列及數(shù)學(xué)期望。
附:.
0.15 | 0.100 | 0.050 | 0.025 | 0.010 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在四邊形ABCD中,∠D=2∠B,且AD=1,CD=3,cos∠B=
(1)求△ACD的面積;
(2)若BC=2 ,求AB的長.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】函數(shù)f(x)=Asin(ωx+φ)滿足:f( +x)=﹣f( ﹣x),且f( +x)=f( ﹣x),則ω的一個可能取值是( )
A.2
B.3
C.4
D.5
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知向量 =(sinx,1), =( Acosx, cos2x)(A>0),函數(shù)f(x)= 的最大值為6.
(1)求A;
(2)將函數(shù)y=f(x)的圖象像左平移 個單位,再將所得圖象各點的橫坐標縮短為原來的 倍,縱坐標不變,得到函數(shù)y=g(x)的圖象.求g(x)在[0, ]上的值域.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】函數(shù)f(x)=Asin(ωx+ )(ω>0)的圖象與x軸的交點的橫坐標構(gòu)成一個公差為 的等差數(shù)列,要得到函數(shù)g(x)=Asinωx的圖象,只需將f(x)的圖象( )
A.向左平移 個單位
B.向右平移 個單位
C.向左平移 個單位
D.向右平移 個單位
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形ABCD的兩條對角線相交于點M(2,0),AB邊所在直線的方程為x-3y-6=0,點T(-1,1)在AD邊所在直線上.求:
(1) AD邊所在直線的方程;
(2) DC邊所在直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(本小題滿分10分) 已知P(3,2),一直線過點P,
①若直線在兩坐標軸上截距之和為12,求直線的方程;
②若直線與x、y軸正半軸交于A、B兩點,當面積為12時求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某企業(yè)今年初用72萬元購買一套新設(shè)備用于生產(chǎn),該設(shè)備第一年需各種費用12萬元,從第二年起,每年所需費用均比上一年增加4萬元,該設(shè)備每年的總收入為50萬元,設(shè)生產(chǎn)x年的 盈利總額為y萬元.寫出y與x的關(guān)系式;
①經(jīng)過幾年生產(chǎn),盈利總額達到最大值?最大值為多少?
②經(jīng)過幾年生產(chǎn),年平均盈利達到最大值?最大值為多少
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com