【題目】函數(shù)f(x)=Asin(ωx+ )(ω>0)的圖象與x軸的交點(diǎn)的橫坐標(biāo)構(gòu)成一個(gè)公差為 的等差數(shù)列,要得到函數(shù)g(x)=Asinωx的圖象,只需將f(x)的圖象(
A.向左平移 個(gè)單位
B.向右平移 個(gè)單位
C.向左平移 個(gè)單位
D.向右平移 個(gè)單位

【答案】D
【解析】解:由題意可得,函數(shù)的周期為 2× =π,再由 =π 可得ω=2,即函數(shù)f(x)=Asin(2x+ )=Asin2(x+ ).
要得到函數(shù)g(x)=Asin2x的圖象,只需將f(x)=Asin2(x+ ) 的圖象向右平移 個(gè)單位即可,
故選D.
【考點(diǎn)精析】本題主要考查了函數(shù)y=Asin(ωx+φ)的圖象變換的相關(guān)知識(shí)點(diǎn),需要掌握?qǐng)D象上所有點(diǎn)向左(右)平移個(gè)單位長(zhǎng)度,得到函數(shù)的圖象;再將函數(shù)的圖象上所有點(diǎn)的橫坐標(biāo)伸長(zhǎng)(縮短)到原來的倍(縱坐標(biāo)不變),得到函數(shù)的圖象;再將函數(shù)的圖象上所有點(diǎn)的縱坐標(biāo)伸長(zhǎng)(縮短)到原來的倍(橫坐標(biāo)不變),得到函數(shù)的圖象才能正確解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】考察下列命題:其中正確的命題有 ( )

(1)擲兩枚硬幣,可能出現(xiàn)“兩個(gè)正面”、“兩個(gè)反面”、“一正一反”3種結(jié)果;

(2)某袋中裝有大小均勻的三個(gè)紅球、二個(gè)黑球、一個(gè)白球,那么每種顏色的球被摸到的可能性相同;(3)從中任取一數(shù),取到的數(shù)小于0與不小于0的可能性相同;

(4)分別從3個(gè)男同學(xué)、4個(gè)女同學(xué)中各選一個(gè)作代表,那么每個(gè)同學(xué)當(dāng)選的可能性相同;

(5)5人抽簽,甲先抽,乙后抽,那么乙與甲抽到某號(hào)中獎(jiǎng)簽的可能性肯定不同.

A. 0個(gè) B. 1個(gè) C. 2個(gè) D. 3個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐P-ABCD中,AB//CD,且

(1)證明:平面PAB⊥平面PAD;

(2)若PA=PD=AB=DC, ,且四棱錐P-ABCD的體積為,求該四棱錐的側(cè)面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,A,B,C所對(duì)的邊分別為a,b,c,已知sinC=
(1)若a+b=5,求△ABC面積的最大值;
(2)若a=2,2sin2A+sinAsinC=sin2C,求b及c的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方體中,若是線段上的動(dòng)點(diǎn),則下列結(jié)論不正確的是(  )

A. 三棱錐的正視圖面積是定值

B. 異面直線所成的角可為

C. 異面直線,所成的角為

D. 直線與平面所成的角可為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知直線:x+y﹣1=0,

(1)若直線過點(diǎn)(3,2)且∥,求直線的方程;

(2)若直線與直線2x﹣y+7=0的交點(diǎn),且,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=lnx﹣
(1)當(dāng)a>0時(shí),判斷f(x)在定義域上的單調(diào)性;
(2)若f(x)在[1,e]上的最小值為 ,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】幾何體ABCD-A1B1C1D1是棱長(zhǎng)為a的正方體,M、N分別是下底面棱A1B1、B1C1的中點(diǎn),P是上底面棱AD上的一點(diǎn),,過P、M、N三點(diǎn)的平面交上底面于PQ, Q在CD上,則PQ等于( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)f(x)=a(x﹣1). (Ⅰ)當(dāng)a=1時(shí),解不等式|f(x)|+|f(﹣x)|≥3x;
(Ⅱ)設(shè)|a|≤1,當(dāng)|x|≤1時(shí),求證:

查看答案和解析>>

同步練習(xí)冊(cè)答案