【題目】五一期間,某商場決定從種服裝、種家電、種日用品中,選出種商品進行促銷活動.

(1)試求選出種商品中至少有一種是家電的概率;

(2)商場對選出的某商品采用抽獎方式進行促銷,即在該商品現(xiàn)價的基礎上將價格提高元,規(guī)定購買該商品的顧客有次抽獎的機會: 若中一次獎,則獲得數(shù)額為元的獎金;若中兩次獎,則獲得數(shù)額為元的獎金;若中三次獎,則共獲得數(shù)額為 元的獎金. 假設顧客每次抽獎中獎的概率都是,請問: 商場將獎金數(shù)額最高定為多少元,才能使促銷方案對商場有利?

【答案】 ;⑵.

【解析】試題分析:

(1)利用題意首先求解沒有家電的概率,結合對立事件的概率公式求解至少有一種是家電的概率即可;

(2)利用題意得到關于 的分布列,結合數(shù)學期望討論商場將獎金數(shù)額最高定為多少元,才能使促銷方案對商場有利即可.

試題解析:

⑴設選出的 種商品中至少有一種是家電為事件A,從 種服裝、 種家電、 種日用品中,選出 種商品,一共有種不同的選法,

選出的 種商品中,沒有家電的選法有種,

所以,選出的 種商品中至少有一種是家電的概率為

⑵設顧客三次抽獎所獲得的獎金總額為隨機變量,其所有可能的取值為0, , , .(單元:元),

表示顧客在三次抽獎都沒有獲獎,所以,

同理;

;

;

顧客在三次抽獎中所獲得的獎金總額的期望值是

,解得

所以最高定為元,才能使促銷方案對商場有利.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知:以點為圓心的圓與x軸交于點O,A,與y軸交于點O,B,其中O為原點.

(1)求證:△OAB的面積為定值; (2)設直線y=-2x+4與圓C交于點M,N,若|OM|=|ON|,求圓C的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在ABC中,內角A,B,C的對邊分別為a,b,c,已知
(1)求 的值;
(2)若 ,b=2,求△ABC的面積S.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知0<α<π,tanα=﹣2.
(1)求sin(α+ )的值;
(2)求 的值;
(3)2sin2α﹣sinαcosα+cos2α

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知正方體

求證:(ⅰ

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=Asin(wx+φ)(x∈R,w>0,0<φ< )的部分圖象如圖所示.

(1)求函數(shù)f(x)的解析式;
(2)求函數(shù)g(x)=f(x﹣ )﹣f(x+ )的單調遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,圓

1)若圓軸相切,求圓的方程;

2)求圓心的軌跡方程;

3)已知,圓軸相交于兩點(點在點的左側).過點任作一條直線與圓 相交于兩點問:是否存在實數(shù),使得若存在,求出實數(shù)的值,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐中,,,平面平面,分別是的中點.

求證:(I)底面

(II)平面平面

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列{an}的前n項和Sn=3n+m(m為常數(shù),n∈N+)
(1)求a1 , a2 , a3;
(2)若數(shù)列{an}為等比數(shù)列,求常數(shù)m的值及an;
(3)對于(2)中的an , 記f(n)=λa2n+1﹣4λan+1﹣7,若f(n)<0對任意的正整數(shù)n恒成立,求實數(shù)λ的取值范圍.

查看答案和解析>>

同步練習冊答案