【題目】對(duì)于函數(shù),若存在實(shí)數(shù)對(duì),使得等式對(duì)定義域中的任意都成立,則稱函數(shù)型函數(shù)”.

1)若型函數(shù),且,求滿足條件的實(shí)數(shù)對(duì)

2)已知函數(shù).函數(shù)型函數(shù),對(duì)應(yīng)的實(shí)數(shù)對(duì),當(dāng)時(shí),.若對(duì)任意時(shí),都存在,使得,求實(shí)數(shù)的值.

【答案】1;(2

【解析】

1)解方程,,即得解;(2)等價(jià)于上的值域是上的值域的子集,等價(jià)于對(duì)任意,都有.再利用型函數(shù)求解.

解:(1)因?yàn)?/span>型函數(shù),

所以存在實(shí)數(shù)對(duì)使得等式成立,即,

代入,可得,即,.

所以滿條件的實(shí)數(shù)對(duì)為.

2)因?yàn)閷?duì)任意時(shí),都存在,使得,

所以上的值域是上的值域的子集.

因?yàn)?/span>,時(shí),,

則對(duì)任意,都有.

因?yàn)?/span>型函數(shù),且對(duì)應(yīng)的實(shí)數(shù)對(duì)為,所以.

當(dāng)時(shí),,則只需滿足對(duì)任意

都有成立.

即對(duì)任意,都有即可,

即不等式對(duì)任意恒成立且.

時(shí),,時(shí)滿足條件;

時(shí),,滿足條件;

時(shí),該不等式等價(jià)于.

時(shí),恒成立,;

時(shí),恒成立,

因?yàn)?/span>上單調(diào)遞增,所以.

綜上可得,.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(2016高考新課標(biāo)II,理15)有三張卡片,分別寫有12,13,23.甲,乙,丙三人各取走一張卡片,甲看了乙的卡片后說:我與乙的卡片上相同的數(shù)字不是2”,乙看了丙的卡片后說:我與丙的卡片上相同的數(shù)字不是1”,丙說:我的卡片上的數(shù)字之和不是5”,則甲的卡片上的數(shù)字是________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)的定義域?yàn)?/span>,部分對(duì)應(yīng)值如下表,的導(dǎo)函數(shù)的圖象如圖所示。

X

-1

0

2

4

5

f(x)

1

2

0

2

1

下列關(guān)于函數(shù)的命題:

①函數(shù)是減函數(shù);

②如果當(dāng)時(shí),的最大值是2,那么t的最大值為4;③函數(shù)有4個(gè)零點(diǎn),則

其中真命題的個(gè)數(shù)是( )

A. 3個(gè) B. 2個(gè) C. 1個(gè) D. 0個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓上的點(diǎn)到它的兩個(gè)焦的距離之和為,以橢圓的短軸為直徑的圓經(jīng)過這兩個(gè)焦點(diǎn),點(diǎn), 分別是橢圓的左、右頂點(diǎn).

)求圓和橢圓的方程.

)已知, 分別是橢圓和圓上的動(dòng)點(diǎn)( 位于軸兩側(cè)),且直線軸平行,直線 分別與軸交于點(diǎn), .求證: 為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓,直線.

1)若直線與圓交于不同的兩點(diǎn),,當(dāng)時(shí),求的值;

2)若,是直線上的動(dòng)點(diǎn),過作圓的兩條切線,切點(diǎn)為,探究:直線是否過定點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】新零售模式的背景下,某大型零售公司推廣線下分店,計(jì)劃在S市的A區(qū)開設(shè)分店,為了確定在該區(qū)開設(shè)分店的個(gè)數(shù),該公司對(duì)該市已開設(shè)分店的其他區(qū)的數(shù)據(jù)作了初步處理后得到下列表格.x表示在各區(qū)開設(shè)分店的個(gè)數(shù),y表示這個(gè)x個(gè)分店的年收入之和.

(1)該公司已經(jīng)過初步判斷,可用線性回歸模型擬合yx的關(guān)系,求y關(guān)于x的線性回歸方程

(2)假設(shè)該公司在A區(qū)獲得的總年利潤(rùn)z(單位:百萬元)x,y之間的關(guān)系為,請(qǐng)結(jié)合(1)中的線性回歸方程,估算該公司應(yīng)在A區(qū)開設(shè)多少個(gè)分店時(shí),才能使A區(qū)平均每個(gè)分店的年利潤(rùn)最大?

(參考公式:,其中,)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】要得到函數(shù)的圖象, 只需將函數(shù)的圖象(

A. 所有點(diǎn)的橫坐標(biāo)伸長(zhǎng)到原來的2(縱坐標(biāo)不變), 再將所得的圖像向左平移個(gè)單位.

B. 所有點(diǎn)的橫坐標(biāo)伸長(zhǎng)到原來的2(縱坐標(biāo)不變), 再將所得的圖像向左平移個(gè)單位.

C. 所有點(diǎn)的橫坐標(biāo)縮短到原來的(縱坐標(biāo)不變), 再將所得的圖像向左平移個(gè)單位.

D. 所有點(diǎn)的橫坐標(biāo)縮短到原來的(縱坐標(biāo)不變), 再將所得的圖像向左平移個(gè)單位.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

1)當(dāng)時(shí),求該函數(shù)的最大值;

2)是否存在實(shí)數(shù),使得該函數(shù)在閉區(qū)間上的最大值為?若存在,求出對(duì)應(yīng)的值;若不存在,試說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】

如圖,在三棱錐P—ABC中,PC⊥底面ABC,AB⊥BC,D,E分別是AB,PB的中點(diǎn).

)求證:DE∥平面PAC

)求證:AB⊥PB;

)若PCBC,求二面角P—AB—C的大小.

查看答案和解析>>

同步練習(xí)冊(cè)答案