【題目】如圖所示,正三角形的中線與中位線相交于點,已知是繞旋轉過程中的一個圖形,現(xiàn)給出下列四個命題,其中正確的命題的序號是( )
A.動點在平面上的射影在上
B.恒有平面平面
C.三棱錐的體積有最大值
D.直線與不可能垂直
【答案】ABC
【解析】
證明出平面平面,利用面面垂直的性質定理可判斷A選項的正誤;利用面面垂直的判定定理可判斷B選項的正誤;由三棱錐的體積公式可判斷C選項的正誤;利用異面直線所成角的概念可判斷D選項的正誤.綜合可得出結論.
對于A選項,在正中,為的中點,則,
、分別為、的中點,,則,
翻折后,對應地有,,,平面,
平面,平面平面,且平面平面,
由面面垂直的性質定理可知,動點在平面上的射影在上,A選項正確;
對于B選項,由A選項可知,平面平面,B選項正確;
對于C選項,由于的面積為定值,當三棱錐的高取得最大值時,即當平面平面時,三棱錐的體積有最大值,C選項正確;
對于D選項,在翻折的過程中,有可能為直角,
、分別為、的中點,則,即,
所以,異面直線與所成的角為或其補角,則直線與可能垂直,D選項錯誤.
故選:ABC.
科目:高中數學 來源: 題型:
【題目】某家庭進行理財投資,根據長期收益率市場預測,投資債券等穩(wěn)健型產品的年收益與投資額成正比,投資股票等風險型產品的年收益與投資額的算術平方根成正比.已知投資1萬元時兩類產品的年收益分別為0.125萬元和0.5萬元(如圖).
(1)分別寫出兩種產品的年收益與投資額的函數關系式;
(2)該家庭現(xiàn)有20萬元資金,全部用于理財投資,問:怎么分配資金能使投資獲得最大年收益,其最大年收益是多少萬元?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖所示,為平行四邊形ABCD所在平面外一點,M,N分別為AB,PC的中點,平面PAD平面PBC=.
(1)求證:BC∥;
(2)MN與平面PAD是否平行?試證明你的結論.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓的左頂點,右焦點分別為,右準線為,
(1)若直線上不存在點,使為等腰三角形,求橢圓離心率的取值范圍;
(2)在(1)的條件下,當取最大值時,點坐標為,設是橢圓上的三點,且,求:以線段的中心為原點,過兩點的圓方程.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數部分圖象如圖所示.
(1)求函數的解析式及的單調遞增區(qū)間;
(2)把函數圖象上點的橫坐標擴大到原來的2倍(縱坐標不變),再向左平移個單位,得到函數的圖象,求關于x的方程在上所有的實數根之和.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系中,經過點且斜率為的直線與橢圓有兩個不同的交點和.
(1)求的取值范圍;
(2)設橢圓與軸正半軸、軸正半軸的交點分別為,是否存在常數,使得向量與共線?如果存在,求值;如果不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某中學為研究學生的身體素質與課外體育鍛煉時間的關系,對該校200名學生的課外體育鍛煉平均每天運動的時間(單位:分鐘)進行調查,將收集的數據分成,,,,,六組,并作出頻率分布直方圖(如圖),將日均課外體育鍛煉時間不低于40分鐘的學生評價為“課外體育達標”.
(1)請根據直方圖中的數據填寫下面的2×2列聯(lián)表,并通過計算判斷是否能在犯錯誤的概率不超過0.01的前提下認為“課外體育達標”與性別有關?
課外體育不達標 | 課外體育達標 | 合計 | |
男 | 60 | ||
女 | 110 | ||
合計 |
(2)現(xiàn)按照“課外體育達標”與“課外體育不達標”進行分層抽樣,抽取8人,再從這8名學生中隨機抽取3人參加體育知識問卷調查,記“課外體育不達標”的人數為X,求X的分布列和數學期望.參考公式:
P(K2≥k0) | 0.15 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k0 | 2.072 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com