【題目】已知函數(shù)f(x)=2x-1,(a∈R),若對任意x1∈[1,+∞),總存在x2∈R,使f(x1)=g(x2),則實數(shù)a的取值范圍是()
A. B. C. D.
【答案】C
【解析】
對a分a=0,a<0和a>0討論,a>0時分兩種情況討論,比較兩個函數(shù)的值域的關(guān)系,即得實數(shù)a的取值范圍.
當(dāng)a=0時,函數(shù)f(x)=2x-1的值域為[1,+∞),函數(shù)的值域為[0,++∞),滿足題意.
當(dāng)a<0時,y=的值域為(2a,+∞), y=的值域為[a+2,-a+2],
因為a+2-2a=2-a>0,所以a+2>2a,
所以此時函數(shù)g(x)的值域為(2a,+∞),
由題得2a<1,即a<,即a<0.
當(dāng)a>0時,y=的值域為(2a,+∞),y=的值域為[-a+2,a+2],
當(dāng)a≥時,-a+2≤2a,由題得.
當(dāng)0<a<時,-a+2>2a,由題得2a<1,所以a<.所以0<a<.
綜合得a的范圍為a<或1≤a≤2,
故選:C.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓,點,是圓上一動點,點在線段上,點在半徑上,且滿足.
(1)當(dāng)在圓上運動時,求點的軌跡的方程;
(2)設(shè)過點的直線與軌跡交于點(不在軸上),垂直于的直線交于點,與軸交于點,若,求點橫坐標(biāo)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知集合,,分別從,中各取2個不同的數(shù),能組成不同的能被3整除的四位偶數(shù)的個數(shù)是________(用數(shù)字作答).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在正整數(shù)數(shù)列中,由1開始依次按如下規(guī)則,將某些數(shù)取出.先取1;再取1后面兩個偶數(shù)2,4;再取4后面最鄰近的3個連續(xù)奇數(shù)5,7,9;再取9后面的最鄰近的4個連續(xù)偶數(shù)10,12,14,16;再取此后最鄰近的5個連續(xù)奇數(shù)17,19,21,23,25.按此規(guī)則一直取下去,得到一個新數(shù)列1,2,4,5,7,9,10,12,14,16,17,…,則在這個新數(shù)列中,由1開始的第2 019個數(shù)是( )
A. 3 971B. 3 972C. 3 973D. 3 974
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在一次運動會上,某單位派出了由6名主力隊員和5名替補隊員組成的代表隊參加比賽.
(1)如果隨機抽派5名隊員上場比賽,將主力隊員參加比賽的人數(shù)記為,求隨機變量的數(shù)學(xué)期望;
(2)若主力隊員中有2名隊員在練習(xí)比賽中受輕傷,不宜同時上場;替補隊員中有2名隊員身材相對矮小,也不宜同時上場,那么為了場上參加比賽的5名隊員中至少有3名主力隊員,教練員有多少種組隊方案?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,曲線的參數(shù)方程為為參數(shù)),在以坐標(biāo)原點為極點,軸的正半軸為極軸的極坐標(biāo)系中,點的極坐標(biāo)為,直線的極坐標(biāo)方程為.
(1)求直線的直角坐標(biāo)方程與曲線的普通方程;
(2)若是曲線上的動點,為線段的中點,求點到直線的距離的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知為坐標(biāo)原點,橢圓的右焦點為,離心率為,過點的直線與相交于兩點,點為線段的中點.
(1)當(dāng)的傾斜角為時,求直線的方程;
(2)試探究在軸上是否存在定點,使得為定值?若存在,求出點的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓E:()的焦距為,直線:與x軸的交點為G,過點且不與x軸重合的直線交E于點A,B.當(dāng)垂直x軸時,的面積為.
(1)求E的方程;
(2)若,垂足為C,直線交x軸于點D,證明:.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com