【題目】在平面直角坐標系中,曲線的參數(shù)方程為為參數(shù)),在以坐標原點為極點,軸的正半軸為極軸的極坐標系中,點的極坐標為,直線的極坐標方程為

(1)求直線的直角坐標方程與曲線的普通方程;

(2)若是曲線上的動點,為線段的中點,求點到直線的距離的最大值.

【答案】(1),;(2).

【解析】

(1)利用極坐標與直角坐標互化公式即可求得直線的直角坐標方程,將曲線C的參數(shù)方程消參數(shù)即可求得曲線的普通方程,問題得解。

(2)求出點的直角坐標,再利用橢圓的參數(shù)方程表示點的坐標為,利用點到直線距離公式及兩角差的正弦公式即可整理點P到直線的距離,問題得解。

(1)因為直線的極坐標方程為,

即ρsinθ-ρcosθ+4=0.

由x=ρcosθ,y=ρsinθ,

可得直線的直角坐標方程為x-y-4=0.

將曲線C的參數(shù)方程消去參數(shù),

得曲線C的普通方程為

(2)設N(,sinα),α∈[0,2π).

點M的極坐標(,)化為直角坐標為(-2,2).

所以點P到直線的距離,

所以當時,點M到直線的距離的最大值為

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

1)當時,討論極值點的個數(shù);

2)若a,b分別為的最大零點和最小零點,當時,證明:.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,離心率為的橢圓過點

(1)求橢圓的標準方程;

(2)若直線上存在點,且過點的橢圓的兩條切線相互垂直,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】2019年2月13日《煙臺市全民閱讀促進條例》全文發(fā)布,旨在保障全民閱讀權利,培養(yǎng)全民閱讀習慣,提高全民閱讀能力,推動文明城市和文化強市建設.某高校為了解條例發(fā)布以來全校學生的閱讀情況,隨機調查了200名學生每周閱讀時間(單位:小時)并繪制如圖所示的頻率分布直方圖.

(1)求這200名學生每周閱讀時間的樣本平均數(shù)和中位數(shù)的值精確到0.01);

(2)為查找影響學生閱讀時間的因素,學校團委決定從每周閱讀時間為,的學生中抽取9名參加座談會.

(i)你認為9個名額應該怎么分配?并說明理由;

(ii)座談中發(fā)現(xiàn)9名學生中理工類專業(yè)的較多.請根據(jù)200名學生的調研數(shù)據(jù),填寫下面的列聯(lián)表,并判斷是否有的把握認為學生閱讀時間不足(每周閱讀時間不足8.5小時)與“是否理工類專業(yè)”有關?

閱讀時間不足8.5小時

閱讀時間超過8.5小時

理工類專業(yè)

40

60

非理工類專業(yè)

附:).

臨界值表:

0.15

0.10

0.05

0.025

0.010

0.005

0.001

<>

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖所示的多面體中,四邊形為菱形,且,的中點.

(1)求證:平面;

(2)若平面平面,求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐中,平面平面,,,,,,的中點.

(1)求證:平面

(2)求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

(1)當,求的單調區(qū)間;

(2)若有兩個零點,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】改革開放以來,我國農村7億多貧困人口擺脫貧困,貧困發(fā)生率由1978年的下降到2018年底的,創(chuàng)造了人類減貧史上的中國奇跡,為全球減貧事業(yè)貢獻了中國智慧和中國方案.“貧困發(fā)生率”是指低于貧困線的人口占全體人口的比例.2012年至2018年我國貧困發(fā)生率的數(shù)據(jù)如表:

年份(

2012

2013

2014

2015

2016

2017

2018

貧困發(fā)生率

10.2

8.5

7.2

5.7

4.5

3.1

1.4

(1)從表中所給的7個貧困發(fā)生率數(shù)據(jù)中任選兩個,求兩個都低于的概率;

(2)設年份代碼,利用回歸方程,分析2012年至2018年貧困發(fā)生率的變化情況,并預測2019年的貧困發(fā)生率.

附:回歸直線的斜率和截距的最小二乘估計公式為:,.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】若無窮數(shù)列滿足:,當',時, (其中表示,,…,中的最大項),有以下結論:

若數(shù)列是常數(shù)列,則;

若數(shù)列是公差的等差數(shù)列,則;

若數(shù)列是公比為的等比數(shù)列,則

若存在正整數(shù),對任意,都有,則,是數(shù)列的最大項.

其中正確結論的序號是____(寫出所有正確結論的序號).

查看答案和解析>>

同步練習冊答案