【題目】在正整數數列中,由1開始依次按如下規(guī)則,將某些數取出.先取1;再取1后面兩個偶數2,4;再取4后面最鄰近的3個連續(xù)奇數5,7,9;再取9后面的最鄰近的4個連續(xù)偶數10,12,14,16;再取此后最鄰近的5個連續(xù)奇數17,19,21,23,25.按此規(guī)則一直取下去,得到一個新數列1,2,4,5,7,9,10,12,14,16,17,…,則在這個新數列中,由1開始的第2 019個數是( )
A. 3 971B. 3 972C. 3 973D. 3 974
【答案】D
【解析】
先對數據進行處理能力再歸納推理出第n組有n個數且最后一個數為n2,則前n組共1+2+3+…+n個數,運算即可得解.
解:將新數列1,2,4,5,7,9,10,12,14,16,17,…,分組為(1),(2,4),(5,7,9,),(10,12,14,16),(17,19,21,23,25)…
則第n組有n個數且最后一個數為n2,
則前n組共1+2+3+…+n個數,
設第2019個數在第n組中,
則,
解得n=64,
即第2019個數在第64組中,
則第63組最后一個數為632=3969,前63組共1+2+3+…+63=2016個數,接著往后找第三個偶數則由1開始的第2019個數是3974,
故選:D.
科目:高中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,橢圓:的離心率為,焦點到相應準線的距離為,,分別為橢圓的左頂點和下頂點,為橢圓上位于第一象限內的一點,交軸于點,交軸于點.
(1)求橢圓的標準方程;
(2)若,求的值;
(3)求證:四邊形的面積為定值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知M( ,0),N(2,0),曲線C上的任意一點P滿足: = | |.
(Ⅰ)求曲線C的方程;
(Ⅱ)設曲線C與x軸的交點分別為A、B,過N的任意直線(直線與x軸不重合)與曲線C交于R、Q兩點,直線AR與BQ交于點S.問:點S是否在同一直線上?若是,請求出這條直線的方程;若不是,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】A市某機構為了調查該市市民對我國申辦2034年足球世界杯的態(tài)度,隨機選取了140位市民進行調查,調查結果統(tǒng)計如下:
支持 | 不支持 | 總計 | |
男性市民 | 60 | ||
女性市民 | 50 | ||
合計 | 70 | 140 |
(I)根據已知數據,把表格數據填寫完整;
(II)利用(1)完成的表格數據回答下列問題:
(ⅰ)能否在犯錯誤的概率不超過0.001的前提下認為性別與支持申辦足球世界杯有關;
(ⅱ)已知在被調查的支持申辦足球世界杯的男性市民中有5位退休老人,其中2位是教師,現從這5位退休老人中隨機抽取3人,求至多有1位老師的概率。
附:,其中
0.050 | 0.025 | 0.010 | 0.005 | 0.001 | |
3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=ax2+bx+c(a≠0)滿足f(0)=0,對于任意x∈R,都有f(x)≥x,且,令g(x)=f(x)﹣|λx﹣1|(λ>0).
(1)求函數f(x)的表達式;
(2)求函數g(x)的單調區(qū)間;
(3)當λ>2時,判斷函數g(x)在區(qū)間(0,1)上的零點個數,并說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓C: + =1(a>b>0)的左、右焦點分別為F1 , F2 , O為坐標原點,點P(1, )在橢圓上,連接PF1交y軸于點Q,點Q滿足 = .直線l不過原點O且不平行于坐標軸,l與橢圓C有兩個交點A,B. (Ⅰ)求橢圓C的標準方程;
(Ⅱ)已知點M( ,0),若直線l過橢圓C的右焦點F2 , 證明: 為定值;
(Ⅲ)若直線l過點(0,2),設N為橢圓C上一點,且滿足 + =λ ,求實數λ的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】甲乙兩名籃球運動員分別在各自不同的5場比賽所得籃板球數的莖葉圖如圖所示,已知兩名運動員在各自5場比賽所得平均籃板球數均為10.
(1)求x,y的值;
(2)求甲乙所得籃板球數的方差和,并指出哪位運動員籃板球水平更穩(wěn)定;
(3)教練員要對甲乙兩名運動員籃板球的整體水平進行評估.現在甲乙各自的5場比賽中各選一場進行評估,則兩名運動員所得籃板球之和小于18的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在三棱柱ABC﹣A1B1C1中,AB⊥平面BB1C1C,∠BCC1= ,AB=BB1=2,BC=1,D為CC1中點.
(1)求證:DB1⊥平面ABD;
(2)求二面角A﹣B1D﹣A1的平面角的余弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,四棱錐E﹣ABCD中,平面EAD⊥平面ABCD,DC∥AB,BC⊥CD,EA⊥ED,且AB=4,BC=CD=EA=ED=2.
(1)求證:BD⊥平面ADE;
(2)求直線BE和平面CDE所成角的正弦值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com