【題目】將函數(shù)的圖象向左平移個單位,得函數(shù)的圖象(如圖) ,點分別是函數(shù)圖象上軸兩側(cè)相鄰的最高點和最低點,設(shè),則的值為( )
A. B. C. D.
【答案】A
【解析】將函數(shù)的圖象向左平移個單位,得函,所以,由余弦定理可得, ,
,故選A.
【方法點晴】本題主要考查三角函數(shù)的圖象與性、余弦定理以及兩角差的正切公式,屬于難題.三角函數(shù)的圖象與性質(zhì)是高考考查的熱點之一,經(jīng)?疾槎x域、值域、周期性、對稱性、奇偶性、單調(diào)性、最值等,其中公式運用及其變形能力、運算能力、方程思想等可以在這些問題中進(jìn)行體現(xiàn),在復(fù)習(xí)時要注意基礎(chǔ)知識的理解與落實.三角函數(shù)的性質(zhì)由函數(shù)的解析式確定,在解答三角函數(shù)性質(zhì)的綜合試題時要抓住函數(shù)解析式這個關(guān)鍵,在函數(shù)解析式較為復(fù)雜時要注意使用三角恒等變換公式把函數(shù)解析式化為一個角的一個三角函數(shù)形式,然后利用正弦(余弦)函數(shù)的性質(zhì)求解.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圖①②都是表示輸出所有立方小于1 000的正整數(shù)的程序框圖,則圖中應(yīng)分別補(bǔ)充的條件為( )
、佟 、
A. ①n3≥1 000? ②n3<1 000?
B. ①n3≤1 000?、趎3≥1 000?
C. ①n3<1 000? ②n3≥1 000?
D. ①n3<1 000?、趎3<1 000?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點,圓是以的中點為圓心, 為半徑的圓.
(Ⅰ)若圓的切線在軸和軸上截距相等,求切線方程;
(Ⅱ)若是圓外一點,從向圓引切線, 為切點, 為坐標(biāo)原點,且有,求使最小的點的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓: 的上下兩個焦點分別為, ,過點與軸垂直的直線交橢圓于、兩點, 的面積為,橢圓的離心力為.
(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)已知為坐標(biāo)原點,直線: 與軸交于點,與橢圓交于, 兩個不同的點,若存在實數(shù),使得,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2016年時紅軍長征勝利80周年,某市電視臺舉辦紀(jì)念紅軍長征勝利80周年知識問答,宣傳長征精神.首先在甲、乙、丙、丁四個不同的公園進(jìn)行支持簽名活動,其次在各公園簽名的人中按分層抽樣的方式抽取10名幸運之星,每人獲得一個紀(jì)念品,其數(shù)據(jù)表格如下:
公園 | 甲 | 乙 | 丙 | 丁 |
獲得簽名人數(shù) | 45 | 60 | 30 | 15 |
(Ⅰ)求此活動中各公園幸運之星的人數(shù);
(Ⅱ)從乙和丙公園的幸運之星中任選兩人接受電視臺記者的采訪,求這兩人均來自乙公園的概率;
(Ⅲ)電視臺記者對乙公園的簽名人進(jìn)行了是否有興趣研究“紅軍長征”歷史的問卷調(diào)查,統(tǒng)計結(jié)果如下(單位:人):
有興趣 | 無興趣 | 合計 | |
男 | 25 | 5 | 30 |
女 | 15 | 15 | 30 |
合計 | 40 | 20 | 60 |
據(jù)此判斷能否在犯錯誤的概率不超過0.01的前提下認(rèn)為有興趣研究“紅軍長征”歷史與性別有關(guān).
臨界值表:
0.100 | 0.050 | 0.010 | 0.001 | |
2.706 | 3.841 | 6.635 | 10.828 |
參考公式: .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某學(xué)校為推行“高效課堂”教學(xué)法,某數(shù)學(xué)老師分別用傳統(tǒng)教學(xué)和“高效課堂”兩種不同的教學(xué)方法,在同一年級的甲、乙兩個同層次的班進(jìn)行教學(xué)實驗,為了解教學(xué)效果,期末考試后, 分別從兩個班級中各隨機(jī)抽取20名學(xué)生的成績進(jìn)行統(tǒng)計,作出的莖葉圖如圖(記成績不低于70分者為“成績優(yōu)良”).
(1)分別計算甲、乙兩班20個樣本中,數(shù)學(xué)成績前十名的平均分,并大致判斷那種教學(xué)方法的教學(xué)效果更佳;
(2)由以上統(tǒng)計數(shù)據(jù)填寫下面列聯(lián)表,并判斷能否在犯錯誤的概率不超過0.05的前提下認(rèn)為“成績優(yōu)良與教學(xué)方法有關(guān)”?
附:
獨立性檢驗臨界表:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)討論函數(shù)的單調(diào)性;
(2)若,過分別作曲線與的切線,且與關(guān)于軸對稱,求證: .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某市需對某環(huán)城快速車道進(jìn)行限速,為了調(diào)研該道路車速情況,于某個時段隨機(jī)對輛車的速度進(jìn)行取樣,測量的車速制成如下條形圖:
經(jīng)計算:樣本的平均值,標(biāo)準(zhǔn)差,以頻率值作為概率的估計值.已知車速過慢與過快都被認(rèn)為是需矯正速度,現(xiàn)規(guī)定車速小于或車速大于是需矯正速度.
(1)從該快速車道上所有車輛中任取個,求該車輛是需矯正速度的概率;
(2)從樣本中任取個車輛,求這個車輛均是需矯正速度的概率;
(3)從該快速車道上所有車輛中任取個,記其中是需矯正速度的個數(shù)為,求的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】現(xiàn)有一張長為,寬為()的長方形鐵皮,準(zhǔn)備用它做成一個無蓋長方體鐵皮容器,要求材料利用率為100%,不考慮焊接處損失.如圖,在長方形的一個角上剪下一塊邊長為的正方形鐵皮,作為鐵皮容器的底面,用余下材料剪拼后作為鐵皮容器的側(cè)面,設(shè)長方體的高為,體積為.
(Ⅰ)求關(guān)于的函數(shù)關(guān)系式;
(Ⅱ)求該鐵皮容器體積的最大值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com