【題目】已知橢圓 的上下兩個焦點分別為 ,過點軸垂直的直線交橢圓、兩點, 的面積為,橢圓的離心力為

(Ⅰ)求橢圓的標準方程;

(Ⅱ)已知為坐標原點,直線 軸交于點,與橢圓交于, 兩個不同的點,若存在實數(shù),使得,求的取值范圍.

【答案】(Ⅰ);(Ⅱ) .

【解析】(Ⅰ)根據(jù)題目條件,由橢圓焦點坐標和對稱性計算的面積,建立等式關(guān)系,結(jié)合關(guān)系式,離心率計算公式,問題可得解;(Ⅱ)由題意,可分直線是否過原點,對截距進行分類討論,再利用橢圓對稱性、向量共線、直線與橢圓有交點等性質(zhì)、條件進行運算即可.

試題解析:(Ⅰ)根據(jù)已知橢圓的焦距為,當時,

由題意的面積為,

由已知得,∴,∴,

∴橢圓的標準方程為

(Ⅱ)若,則,由橢圓的對稱性得,即,

能使成立.

,由,得,

因為, 共線,所以,解得. 

設(shè), ,由

由已知得,即,

, ,

,得,即,∴,

,即

時, 不成立,∴,

,∴,即

,解得

綜上所述, 的取值范圍為

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某品牌汽車的店,對最近100份分期付款購車情況進行統(tǒng)計,統(tǒng)計情況如下表所示.已知分9期付款的頻率為0.4;該店經(jīng)銷一輛該品牌汽車,若顧客分3期付款,其利潤為1萬元;分6期或9期付款,其利潤為2萬元;分12期付款,其利潤為3萬元.

付款方式

分3期

分6期

分9期

分12期

頻數(shù)

20

20

(1)若以上表計算出的頻率近似替代概率,從該店采用分期付款購車的顧客(數(shù)量較大)中隨機抽取3為顧客,求事件:“至多有1位采用分6期付款“的概率;

(2)按分層抽樣方式從這100為顧客中抽取5人,再從抽取的5人中隨機抽取3人,記該店在這3人身上賺取的總利潤為隨機變量,求的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的長軸長為, 為坐標原點.

(1)求橢圓的方程和離心率.

(2)設(shè)點,動點軸上,動點在橢圓上,且點軸的右側(cè).若,求四邊形面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知兩條不重合的直線和兩個不重合的平面,若,則下列四個命題:①若,則;②若,則; ③若,則;④若,則,其中正確命題的個數(shù)是( )

A. 0 B. 1 C. 2 D. 3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓 )的離心率為,以橢圓的四個頂點為頂點的四邊形的面積為8.

(Ⅰ)求橢圓的方程;

(Ⅱ)如圖,斜率為的直線與橢圓交于, 兩點,點在直線的左上方.若,且直線, 分別與軸交于, 點,求線段的長度.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標系中,以坐標原點為極點, 軸的非負半軸為極軸建立極坐標系.已知點的極坐標為,曲線的參數(shù)方程為為參數(shù)).

(1)直線且與曲線相切,求直線的極坐標方程;

(2)點與點關(guān)于軸對稱,求曲線上的點到點的距離的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】將函數(shù)的圖象向左平移個單位,得函數(shù)的圖象(如圖) ,點分別是函數(shù)圖象上軸兩側(cè)相鄰的最高點和最低點,設(shè),則的值為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了選拔參加自行車比賽的選手,對自行車運動員甲、乙兩人在相同條件下進行了6次測試,測得他們的最大速度(單位:m/s)的數(shù)據(jù)如下:

27

38

30

37

35

31

33

29

38

34

28

36

(1)畫出莖葉圖,由莖葉圖你能獲得哪些信息;

(2)估計甲、乙兩運動員的最大速度的平均數(shù)和方差,并判斷誰參加比賽更合適.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】是等邊三角形,邊長為4, 邊的中點為,橢圓, 為左、右兩焦點,且經(jīng)過、兩點。

(1)求該橢圓的標準方程;

(2)過點軸不垂直的直線交橢圓于 兩點,求證:直線的交點在一條定直線上.

查看答案和解析>>

同步練習冊答案