【題目】超市為了防止轉(zhuǎn)基因產(chǎn)品影響民眾的身體健康,要求產(chǎn)品在進(jìn)入超市前必須進(jìn)行兩輪轉(zhuǎn)基因檢測(cè),只有兩輪都合格才能銷售,否則不能銷售.已知某產(chǎn)品第一輪檢測(cè)不合格的概率為,第二輪檢測(cè)不合格的概率為,兩輪檢測(cè)是否合格相互沒有影響.

1)求該產(chǎn)品不能銷售的概率;

2)如果產(chǎn)品可以銷售,則每件產(chǎn)品可獲利50元;如果產(chǎn)品不能銷售,則每件產(chǎn)品虧損60.已知一箱中有產(chǎn)品4件,記一箱產(chǎn)品獲利元,求的分布列,并求出均值.

【答案】1;(2)分布列見解析,.

【解析】

1)記“該產(chǎn)品不能銷售”為事件,則,計(jì)算得到答案.

2的取值為-240,-130,-20,90,200,計(jì)算概率得到分布列,計(jì)算均值得到答案.

1)記“該產(chǎn)品不能銷售”為事件,則,

所以該產(chǎn)品不能銷售的概率為.

2)依據(jù)題意的,的取值為-240,-130,-20,90,200,

;

;

.

所以的分布列為:

-240

-130

-20

90

200

.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】小王投資1萬(wàn)元2萬(wàn)元、3萬(wàn)元獲得的收益分別是4萬(wàn)元、9萬(wàn)元、16萬(wàn)元為了預(yù)測(cè)投資資金x(萬(wàn)元)與收益y萬(wàn)元)之間的關(guān)系,小王選擇了甲模型和乙模型.

1)根據(jù)小王選擇的甲、乙兩個(gè)模型,求實(shí)數(shù)a,b,c,p,q,r的值

2)若小王投資4萬(wàn)元,獲得收益是25.2萬(wàn)元,請(qǐng)問(wèn)選擇哪個(gè)模型較好?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知 ,求證: .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】西北某省會(huì)城市計(jì)劃新修一座城市運(yùn)動(dòng)公園,設(shè)計(jì)平面如圖所示:其為五邊形,其中三角形區(qū)域為球類活動(dòng)場(chǎng)所;四邊形為文藝活動(dòng)場(chǎng)所,,為運(yùn)動(dòng)小道(不考慮寬度),,千米.

(1)求小道的長(zhǎng)度;

(2)求球類活動(dòng)場(chǎng)所的面積最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】有一塊鐵皮零件,其形狀是由邊長(zhǎng)為的正方形截去一個(gè)三角形所得的五邊形,其中,如圖所示.現(xiàn)在需要用這塊材料截取矩形鐵皮,使得矩形相鄰兩邊分別落在上,另一頂點(diǎn)落在邊邊上.設(shè),矩形的面積為.

1)試求出矩形鐵皮的面積關(guān)于的函數(shù)解析式,并寫出定義域;

2)試問(wèn)如何截。取何值時(shí)),可使得到的矩形的面積最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某圓柱的高為2,底面周長(zhǎng)為16,其三視圖如圖所示,圓柱表面上的點(diǎn)在正視圖上的對(duì)應(yīng)點(diǎn)為,圓柱表面上的點(diǎn)在左視圖上的對(duì)應(yīng)點(diǎn)為,則在此圓柱側(cè)面上,從的路徑中,最短路徑的長(zhǎng)度為( )

A. B. C. D. 2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】2018年是中國(guó)改革開放的第40周年,為了充分認(rèn)識(shí)新形勢(shì)下改革開放的時(shí)代性,某地的民調(diào)機(jī)構(gòu)隨機(jī)選取了該地的100名市民進(jìn)行調(diào)查,將他們的年齡分成6段:,并繪制了如圖所示的頻率分布直方圖.

(1)現(xiàn)從年齡在內(nèi)的人員中按分層抽樣的方法抽取8人,再?gòu)倪@8人中隨機(jī)抽取3人進(jìn)行座談,用表示年齡在內(nèi)的人數(shù),求的分布列和數(shù)學(xué)期望;

(2)若用樣本的頻率代替概率,用隨機(jī)抽樣的方法從該地抽取20名市民進(jìn)行調(diào)查,其中有名市民的年齡在的概率為.當(dāng)最大時(shí),求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在多面體中,四邊形是邊長(zhǎng)為的菱形,,交于點(diǎn),平面平面,,,.

(1)求證:平面;

(2)若為等邊三角形,點(diǎn)的中點(diǎn),求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)是定義在上的偶函數(shù),當(dāng)時(shí),.現(xiàn)已畫出函數(shù)軸右側(cè)的圖象,如圖所示.

1)畫出函數(shù)軸左側(cè)的圖象,根據(jù)圖象寫出函數(shù)上的單調(diào)區(qū)間;

2)求函數(shù)上的解析式;

3)解不等式.

查看答案和解析>>

同步練習(xí)冊(cè)答案