【題目】隨機詢問某大學40名不同性別的大學生在購買食物時是否讀營養(yǎng)說明,得到如下列聯(lián)表:
性別與讀營養(yǎng)說明列聯(lián)表:
男 | 女 | 總計 | |
讀營養(yǎng)說明 | 16 | 8 | 24 |
不讀營養(yǎng)說明 | 4 | 12 | 16 |
總計 | 20 | 20 | 40 |
(Ⅰ)根據(jù)以上列聯(lián)表進行獨立性檢驗,能否在犯錯誤的概率不超過0.01的前提下認為性別與是否讀營養(yǎng)說明之間有關(guān)系?
(Ⅱ)從被詢問的16名不讀營養(yǎng)說明的大學生中,隨機抽取2名學生,求抽到男生人數(shù)的分布列及其均值(即數(shù)學期望).
(注:,其中為樣本容量.)
科目:高中數(shù)學 來源: 題型:
【題目】設(shè)△ABC的三內(nèi)角A,B,C的對邊分別是a,b,c,且b(sinB-sinC)+(c-a)(sinA+sinC)=0.
(Ⅰ)求角A的大小;
(Ⅱ)若,,求△ABC的面積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知直線:,半徑為2的圓與相切,圓心在軸上且在直線的右上方.
(1)求圓的方程;
(2)若直線過點且與圓交于,兩點(在軸上方,在軸下方),問在軸正半軸上是否存在定點,使得軸平分?若存在,請求出點的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在四棱錐中,底面,底面是直角梯形,,,,是的中點.
(1)求證:平面平面;
(2)若二面角的余弦值為,求直線與平面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù),.
(I)求證:在區(qū)間上單調(diào)遞增;
(II)若,函數(shù)在區(qū)間上的最大值為,求的試題分析式.并判斷是否有最大值和最小值,請說明理由(參考數(shù)據(jù):)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com