【題目】已知函數(shù).
(1)討論函數(shù)的單調(diào)性;
(2)時(shí), 有恒成立, 求整數(shù)最小值.
【答案】(1) 上遞增,在遞減;(2).
【解析】
試題分析:(1)求出原函數(shù)的導(dǎo)函數(shù),可得時(shí),,在上單調(diào)遞增;當(dāng)時(shí),求出導(dǎo)函數(shù)的零點(diǎn),由函數(shù)零點(diǎn)對(duì)定義域分段,結(jié)合導(dǎo)函數(shù)的符號(hào)可得原函數(shù)的單調(diào)區(qū)間;(2)當(dāng)時(shí),由,得,分離參數(shù),得在上恒成立.構(gòu)造函數(shù),兩次求導(dǎo)可得.由此求得整數(shù)的最小值為.
試題解析:(1)定義域?yàn)?/span>,時(shí), 在
上單調(diào)遞減;時(shí), 令 , 得(舍去負(fù)的). 上遞增,
在遞減.
(2)時(shí),,
在上恒成立, 令,則.
令在遞減, 且時(shí), , 時(shí), ,因此在必存在唯一零點(diǎn), 不妨設(shè),即,
當(dāng)時(shí), 單調(diào)遞增;當(dāng)時(shí), 單調(diào)遞減;因此,
,即,依題意有,
即整數(shù)的最小值為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的離心率為,點(diǎn)在橢圓上.
(I)求橢圓的方程;
(II)設(shè)動(dòng)直線與橢圓有且僅有一個(gè)公共點(diǎn),判斷是否存在以原點(diǎn)為圓心的圓,滿足此圓與相交于兩點(diǎn)(兩點(diǎn)均不在坐標(biāo)軸上),且使得直線的斜率之積為定值?若存在,求此圓的方程;若不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】公司從某大學(xué)招收畢業(yè)生,經(jīng)過(guò)綜合測(cè)試,錄用了名男生和名女生,這名畢業(yè)生的測(cè)試成績(jī)?nèi)缜o葉圖所示(單位:分),公司規(guī)定:成績(jī)?cè)?/span>分以上者到甲部門(mén)工作;分以下者到乙部門(mén)工作,另外只有成績(jī)高于分才能擔(dān)任助理工作。
(1)如果用分層抽樣的方法從甲部門(mén)人選和乙部門(mén)人選中選取人,再?gòu)倪@人中選人,那么至少有一人是甲部門(mén)人選的概率是多少?
(2)若從所有甲部門(mén)人選中隨機(jī)選人,用表示所選人員中能擔(dān)任助理工作的男生人數(shù),寫(xiě)出的分布列,并求出的數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了在夏季降溫和冬季供暖時(shí)減少能源損耗,房屋的房頂和外墻需要建造隔熱層.某幢建筑物要建造可使用20年的隔熱層,每厘米厚的隔熱層建造成本為6萬(wàn)元.該建筑物每年的能源消耗費(fèi)用(單位:萬(wàn)元)與隔熱層厚度(單位:cm)滿足關(guān)系,若不建隔熱層,每年能源消耗費(fèi)用為8萬(wàn)元,設(shè)為隔熱層建造費(fèi)用與20年的能源消耗費(fèi)用之和.
(1)求的值及的表達(dá)式;
(2)隔熱層修建多厚時(shí),總費(fèi)用達(dá)到最小,并求最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知圓內(nèi)有一點(diǎn)為過(guò)點(diǎn)且傾斜角為的弦.
(1)當(dāng)時(shí),求弦的長(zhǎng);
(2)當(dāng)弦被平分時(shí),圓經(jīng)過(guò)點(diǎn)且與直線相切于點(diǎn),求圓的標(biāo)準(zhǔn)方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)列{an}是公差為3的等差數(shù)列,數(shù)列{bn}滿足b1=1,b2=,anbn+1+bn+1=nbn.
(Ⅰ)分別求數(shù)列{an},{bn}的通項(xiàng)公式;
(Ⅱ)令cn= an bn,求數(shù)列{cn}的前n項(xiàng)和Tn.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】隨機(jī)詢問(wèn)某大學(xué)40名不同性別的大學(xué)生在購(gòu)買(mǎi)食物時(shí)是否讀營(yíng)養(yǎng)說(shuō)明,得到如下列聯(lián)表:
性別與讀營(yíng)養(yǎng)說(shuō)明列聯(lián)表:
男 | 女 | 總計(jì) | |
讀營(yíng)養(yǎng)說(shuō)明 | 16 | 8 | 24 |
不讀營(yíng)養(yǎng)說(shuō)明 | 4 | 12 | 16 |
總計(jì) | 20 | 20 | 40 |
(Ⅰ)根據(jù)以上列聯(lián)表進(jìn)行獨(dú)立性檢驗(yàn),能否在犯錯(cuò)誤的概率不超過(guò)0.01的前提下認(rèn)為性別與是否讀營(yíng)養(yǎng)說(shuō)明之間有關(guān)系?
(Ⅱ)從被詢問(wèn)的16名不讀營(yíng)養(yǎng)說(shuō)明的大學(xué)生中,隨機(jī)抽取2名學(xué)生,求抽到男生人數(shù)的分布列及其均值(即數(shù)學(xué)期望).
(注:,其中為樣本容量.)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)當(dāng)時(shí),證明:在定義域上為減函數(shù);
(2)若時(shí),討論函數(shù)的零點(diǎn)情況.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)列的前項(xiàng)和為,,是6與的等差中項(xiàng).
(1)求數(shù)列的通項(xiàng)公式;
(2)是否存在正整數(shù),使不等式恒成立,若存在,求出的最大值;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com