【題目】某廠銷(xiāo)售部以箱為單位銷(xiāo)售某種零件,每箱的定價(jià)為200元,低于100箱按原價(jià)銷(xiāo)售;不低于100箱通過(guò)雙方議價(jià),買(mǎi)方能以?xún)?yōu)惠成交的概率為0.6,以?xún)?yōu)惠成交的概率為0.4.

(1)甲、乙兩單位都要在該廠購(gòu)買(mǎi)150箱這種零件,兩單位各自達(dá)成的成交價(jià)相互獨(dú)立,求甲單位優(yōu)惠比例不低于乙單位優(yōu)惠比例的概率;

(2)某單位需要這種零件650箱,求購(gòu)買(mǎi)總價(jià)的數(shù)學(xué)期望.

【答案】(1)0.76;(2)120640元.

【解析】

(1)先求甲單位優(yōu)惠比例低于乙單位優(yōu)惠比例的概率,再由對(duì)立事件得概率即可求解;(2)先寫(xiě)出在折扣優(yōu)惠中每箱零件的價(jià)格為的取值,再列分布列求解即可

(1)因?yàn)榧讍挝粌?yōu)惠比例低于乙單位優(yōu)惠比例的概率為,

所以甲單位優(yōu)惠比例不低于乙單位優(yōu)惠比例的概率.

(2)設(shè)在折扣優(yōu)惠中每箱零件的價(jià)格為元,則或188.

的分布列為

184

188

0.6

0.4

.

從而購(gòu)買(mǎi)總價(jià)的數(shù)學(xué)期望為元.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示:在五面體ABCDEF中,四邊形EDCF是正方形,AD=DE=1,∠ADE=90°,∠ADC=∠DCB=120°.

(Ⅰ)求證:平面ABCD⊥平面EDCF;

(Ⅱ)求三棱錐A-BDF的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】楊輝三角,又稱(chēng)帕斯卡三角,是二項(xiàng)式系數(shù)在三角形中的一種幾何排列.在我國(guó)南宋數(shù)學(xué)家楊輝所著的《詳解九章算法》(1261年)一書(shū)中用如圖所示的三角形解釋二項(xiàng)式乘方展開(kāi)式的系數(shù)規(guī)律.現(xiàn)把楊輝三角中的數(shù)從上到下,從左到右依次排列,得數(shù)列:1,1,1,1,2,1,1,3,3,1,1,4,6,4,1…….記作數(shù)列,若數(shù)列的前項(xiàng)和為,則 ( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在直角坐標(biāo)系中已知A(4,O)、B(0,2)、C(-1,0)D(0,-2),點(diǎn)E在線段AB(不含端點(diǎn)),點(diǎn)F在線段CD,E、OF三點(diǎn)共線.

(1)F為線段CD的中點(diǎn),證明:;

(2)“F為線段CD的中點(diǎn),的逆命題是否成立?說(shuō)明理由;

(3)設(shè),的值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐中,, ODE的中點(diǎn),F的中點(diǎn),平面平面BCED

1)求證:平面 平面

2)線段OC上是否存在點(diǎn)G,使得平面EFG?說(shuō)明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的離心率,且經(jīng)過(guò)點(diǎn)

求橢圓的方程;

過(guò)點(diǎn)且不與軸重合的直線與橢圓交于不同的兩點(diǎn),過(guò)右焦點(diǎn)的直線分別交橢圓于點(diǎn),設(shè) ,的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四棱錐中,底面為平行四邊形,的中點(diǎn),平面的中點(diǎn),,

1)證明:平面

2)如果二面角的正切值為2,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知?jiǎng)訄A過(guò)定點(diǎn),且與定直線相切.

1)求動(dòng)圓圓心的軌跡的方程;

2)過(guò)點(diǎn)的任一條直線與軌跡交于不同的兩點(diǎn),試探究在軸上是否存在定點(diǎn)(異于點(diǎn)),使得?若存在,求點(diǎn)的坐標(biāo);若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了了解地區(qū)足球特色學(xué)校的發(fā)展?fàn)顩r,某調(diào)查機(jī)構(gòu)得到如下統(tǒng)計(jì)數(shù)據(jù):

年份

2014

2015

2016

2017

2018

足球特色學(xué)校(百個(gè))

0.30

0.60

1.00

1.40

1.70

(Ⅰ)根據(jù)上表數(shù)據(jù),計(jì)算的相關(guān)系數(shù),并說(shuō)明的線性相關(guān)性強(qiáng)弱(已知:,則認(rèn)為線性相關(guān)性很強(qiáng);,則認(rèn)為線性相關(guān)性一般;,則認(rèn)為線性相關(guān)性較弱);

(Ⅱ)求關(guān)于的線性回歸方程,并預(yù)測(cè)地區(qū)2019年足球特色學(xué)校的個(gè)數(shù)(精確到個(gè))

參考公式:,,,.

查看答案和解析>>

同步練習(xí)冊(cè)答案