【題目】如圖所示:在五面體ABCDEF中,四邊形EDCF是正方形,AD=DE=1,∠ADE=90°,∠ADC=∠DCB=120°.

(Ⅰ)求證:平面ABCD⊥平面EDCF;

(Ⅱ)求三棱錐A-BDF的體積.

【答案】(1)見解析:(2)

【解析】

(1)推導(dǎo)出AD⊥DE,CD⊥DE,從而DE⊥平面ABCD,由此能證明平面ABCD⊥平面EDCF,(2)三棱錐A﹣BDF的體積VA﹣BDF=VF﹣ABD,由此能求出結(jié)果.

(1)證明:∵在五面體ABCDEF中,四邊形EDCF是正方形,∠ADE=90°,

∴AD⊥DE,CD⊥DE,

∵AD∩CD=D,∴DE⊥平面ABCD,

∵DE平面EDCF,∴平面ABCD⊥平面EDCF.

(2) 由(1)知DE⊥平面,所以平面. 等腰三角形

又DC∥EF,平面ABFE,平面ABFE,所以DC∥平面ABFE.

又平面ABCD∩平面ABFE=AB,故AB∥CD.所以四邊形為等腰梯形.又AD=DE,所以AD=CD=CB,由,在等腰中由余弦定理得BD=ADBD,所以三棱錐的體積為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)fx)=(kx+ex2x,若fx)<0的解集中有且只有一個(gè)正整數(shù),則實(shí)數(shù)k的取值范圍為 (  )

A. [ ,B. ,]

C. [D. [

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)的傾斜角為繞其上一點(diǎn)沿逆時(shí)針方向旋轉(zhuǎn)角得到直線軸上的截距為沿逆時(shí)針方向再旋轉(zhuǎn)角得到直線,則的方程為___________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列命題中,正確的序號(hào)是_____

①直線上有兩個(gè)點(diǎn)到平面的距離相等,則這條直線和這個(gè)平面平行;

②過(guò)球面上任意兩點(diǎn)的大圓有且只有一個(gè);

③直四棱柱是直平行六面體;

為異面直線,則過(guò)且與平行的平面有且僅有一個(gè);

⑤兩相鄰側(cè)面所成角相等的棱錐是正棱錐.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,設(shè)是棱長(zhǎng)為的正方體的一個(gè)頂點(diǎn),過(guò)從此頂點(diǎn)出發(fā)的三條棱的中點(diǎn)作截面,對(duì)正方體的所有頂點(diǎn)都如此操作,所得的各截面與正方體各面共同圍成一個(gè)多面體,則關(guān)于此多面體有以下結(jié)論:個(gè)頂點(diǎn);條棱;個(gè)面;表面積為;體積為.其中正確的結(jié)論是____________.(要求填上所有正確結(jié)論的序號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在五面體中,四邊形是正方形,,.

(1)求證:;

(2)求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在萬(wàn)眾創(chuàng)新的大經(jīng)濟(jì)背景下,某成都青年面包店推出一款新面包,每個(gè)面包的成本價(jià)為元,售價(jià)為元,該款面包當(dāng)天只出一爐(一爐至少個(gè),至多個(gè)),當(dāng)天如果沒有售完,剩余的面包以每個(gè)元的價(jià)格處理掉,為了確定這一爐面包的個(gè)數(shù),該店記錄了這款新面包最近天的日需求量(單位:個(gè)),整理得下表:

日需求量

頻數(shù)

(1)根據(jù)表中數(shù)據(jù)可知,頻數(shù)與日需求量(單位:個(gè))線性相關(guān),求關(guān)于的線性回歸方程;

(2)以天記錄的各日需求量的頻率代替各日需求量的概率,若該店這款新面包出爐的個(gè)數(shù)為,記當(dāng)日這款新面包獲得的總利潤(rùn)為(單位:元).求的分布列及其數(shù)學(xué)期望.

相關(guān)公式:,

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知分別是雙曲線E 的左、右焦點(diǎn),P是雙曲線上一點(diǎn), 到左頂點(diǎn)的距離等于它到漸近線距離的2倍,(1)求雙曲線的漸近線方程;(2)當(dāng)時(shí), 的面積為,求此雙曲線的方程。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某廠銷售部以箱為單位銷售某種零件,每箱的定價(jià)為200元,低于100箱按原價(jià)銷售;不低于100箱通過(guò)雙方議價(jià),買方能以優(yōu)惠成交的概率為0.6,以優(yōu)惠成交的概率為0.4.

(1)甲、乙兩單位都要在該廠購(gòu)買150箱這種零件,兩單位各自達(dá)成的成交價(jià)相互獨(dú)立,求甲單位優(yōu)惠比例不低于乙單位優(yōu)惠比例的概率;

(2)某單位需要這種零件650箱,求購(gòu)買總價(jià)的數(shù)學(xué)期望.

查看答案和解析>>

同步練習(xí)冊(cè)答案