學(xué)校將5個(gè)參加知識(shí)競(jìng)賽的名額全部分配給高一年段的4個(gè)班級(jí),其中甲班級(jí)至少分配2個(gè)名額,其它班級(jí)可以不分配名額或分配多個(gè)名額,則不同的分配方案共有
 
考點(diǎn):排列、組合及簡(jiǎn)單計(jì)數(shù)問(wèn)題
專(zhuān)題:應(yīng)用題,排列組合
分析:利用甲班級(jí)分配2、3、4、5個(gè)名額,其它班級(jí)可以不分配名額或分配多個(gè)名額.即可得出結(jié)論.
解答: 解:甲班級(jí)分配2個(gè)名額,其它班級(jí)可以不分配名額或分配多個(gè)名額,有1+6+3=10種不同的分配方案;
甲班級(jí)分配3個(gè)名額,其它班級(jí)可以不分配名額或分配多個(gè)名額,有3+3=6種不同的分配方案;
甲班級(jí)分配4個(gè)名額,其它班級(jí)可以不分配名額或分配多個(gè)名額,有3種不同的分配方案;
甲班級(jí)分配5個(gè)名額,有1種不同的分配方案.
故共有10+6+3+1=20種不同的分配方案,
故答案為:20.
點(diǎn)評(píng):本題考查分類(lèi)計(jì)數(shù)原理,注意分類(lèi)時(shí)做到不重不漏,是一個(gè)中檔題,解題時(shí)任意出錯(cuò),本題應(yīng)用分類(lèi)討論思想.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某市用37輛汽車(chē)往災(zāi)區(qū)運(yùn)送一批救災(zāi)物資,假設(shè)以v(km/h)的速度直達(dá)災(zāi)區(qū),已知某市到災(zāi)區(qū)公路線長(zhǎng)400km,為了安全起見(jiàn),兩輛汽車(chē)的間距不得小于(
v
20
)2
km,那么這批物資全部到達(dá)災(zāi)區(qū)的最少時(shí)間是
 
h(車(chē)身長(zhǎng)度不計(jì)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知
a
=(cosx,-
1
2
),
b
=(sinx+cosx,1),f(x)=
a
b
,
(Ⅰ)若0<α<
π
2
,sinα=
2
2
,求f(α)的值;
(Ⅱ)求函數(shù)f(x)的最小正周期及單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下列各函數(shù)中,為指數(shù)函數(shù)的是( 。
A、f(x)=x2
B、f(x)=(-2)x
C、f(x)=5x
D、f(x)=x 
1
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知向量
a
,
b
,
c
,
d
在平面上任選一點(diǎn)O,作
OA
=
a
,
AB
=
b
,
BC
=
c
,
CD
=
d
,則
OD
=
OA
+
AB
+
BC
+
CD
=
a
+
b
+
c
+
d
.已知n個(gè)向量,依次把這n個(gè)向量首尾相連,以第一個(gè)向量的始點(diǎn)為始點(diǎn),第n個(gè)向量的終點(diǎn)為終點(diǎn)的向量叫做
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知向量
OA
=(4,0),B是圓C:(x-
2
2+(y-
2
2=1上的一個(gè)動(dòng)點(diǎn),則兩向量
OA
OB
所成角的最大值為( 。
A、
π
12
B、
π
6
C、
π
3
D、
12

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)f(x)=ax+b,且
1
-1
[f(x)]2dx=1,求f(a)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

直線x+y=
6
截圓x2+y2=4的劣弧所對(duì)的圓心角是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

經(jīng)過(guò)點(diǎn)P(3,2)求:
(1)與直線3x-2y+1=0平行的直線的方程;
(2)與直線3x-2y+1=0垂直的直線的方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案