【題目】下列表述:①綜合法是由因?qū)Ч;②綜合法是順推證法;③分析法是執(zhí)果索因法;④分析法是間接證法;⑤反證法是逆推證法;其中正確的是(

A.①②③B.③④⑤C.①③④D.②③⑤

【答案】A

【解析】

根據(jù)綜合法、分析法和反證法的概念,逐一判斷即可.

由綜合法的概念可得:綜合法是由因?qū)Ч,是順推證法,故①、②正確;

根據(jù)分析法的概念可得:分析法是執(zhí)果索因法,是直接證法,故③正確,④錯(cuò)誤;

由反證法的概念可得:反證法是間接證明法,不屬于逆推證法,故⑤錯(cuò)誤.

故選:A.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】m=-2直線(m+2x+3my+1=0與直線(m2x+m+2y3=0相互垂直( )

A充分必要條件 B充分而不必要條件

C必要而不充分條件 D既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某公司在甲、乙、丙、丁四個(gè)地區(qū)分別有150個(gè)、120個(gè)、180個(gè)、150個(gè)銷售點(diǎn).公司為了調(diào)查產(chǎn)品銷售的情況,需從這600個(gè)銷售點(diǎn)中抽取一個(gè)容量為100的樣本,記這項(xiàng)調(diào)查為①;在丙地區(qū)有10個(gè)特大型銷售點(diǎn),要從中抽取7個(gè)銷售點(diǎn)調(diào)查其銷售收入和售后服務(wù)等情況,記這項(xiàng)調(diào)查為②,則完成①②這兩項(xiàng)調(diào)查宜采用的抽樣方法分別為_____.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】省工商局于2003年3月份,對(duì)全省流通領(lǐng)域的飲料進(jìn)行了質(zhì)量監(jiān)督抽查,結(jié)果顯示,某種剛進(jìn)入市場(chǎng)的x飲料的合格率為80%,現(xiàn)有甲、乙、丙3人聚會(huì),選用6瓶x飲料,并限定每人喝2瓶.則甲喝2瓶合格的x飲料的概率是________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】現(xiàn)要完成下列兩項(xiàng)調(diào)查:①從某社區(qū)70戶高收入家庭、335戶中等收入家庭、95戶低收入家庭中選出100戶,調(diào)查社會(huì)購買能力的某項(xiàng)指標(biāo);②從某中學(xué)的15名藝術(shù)特長生中選出3名調(diào)查學(xué)習(xí)負(fù)擔(dān)情況.這兩項(xiàng)調(diào)查宜采用的抽取方法是(

A.①簡單隨機(jī)抽樣,②分層隨機(jī)抽樣B.①分層隨機(jī)抽樣,②簡單隨機(jī)抽樣

C.①②都用簡單隨機(jī)抽樣D.①②都用分層隨機(jī)抽樣

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】單調(diào)遞增數(shù)列中, ,且成等差數(shù)列, 成等比數(shù)列,.

(1)求證:數(shù)列為等差數(shù)列;

求數(shù)列通項(xiàng)公式;

(2)設(shè)數(shù)列的前項(xiàng)和為,證明:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某企業(yè)接到生產(chǎn)3000臺(tái)某產(chǎn)品的三種部件的訂單,每臺(tái)產(chǎn)品需要這三種部件的數(shù)量分別為2,2,1單位:件.已知每個(gè)工人每天可生產(chǎn)部件6件,或部件3件,或部件2件.該企業(yè)計(jì)劃安排200名工人分成三組分別生產(chǎn)這三種部件,生產(chǎn)部件的人數(shù)與生產(chǎn)部件的人數(shù)成正比,比例系數(shù)為為正整數(shù)

1設(shè)生產(chǎn)部件的人數(shù)為,分別寫出完成三件部件生產(chǎn)需要的時(shí)間;

2假設(shè)這三種部件的生產(chǎn)同時(shí)開工,試確定正整數(shù)的值,使完成訂單任務(wù)的時(shí)間最短,并給出時(shí)間最短時(shí)具體的人數(shù)分組方案.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,已知曲線為參數(shù),以平面直角坐標(biāo)系的原點(diǎn)為極點(diǎn),軸的正半軸為極軸,取相同的單位長度建立極坐標(biāo)系,已知直線.

1將曲線上的所有點(diǎn)的橫坐標(biāo)、縱坐標(biāo)分別伸長為原來的,2倍后得到曲線,試寫出直線的直角坐標(biāo)方程和曲線的參數(shù)方程;

2在曲線上求一點(diǎn),使點(diǎn)到直線的距離最大,并求出此最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】拋擲兩顆骰子,計(jì)算:

1)事件兩顆骰子點(diǎn)數(shù)相同的概率;

2)事件點(diǎn)數(shù)之和小于7”的概率;

3)事件點(diǎn)數(shù)之和等于或大于11”的概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案