某高校自主招生面試成績的莖葉圖和頻率分布直方圖均受到不同程度的破壞,其可見部分信息如圖所示,據(jù)此解答下列問題;
(Ⅰ)求參加此次高校自主招生面試的人數(shù)n、面試成績的中位數(shù)及分?jǐn)?shù)分別在[80,90),[90,100)內(nèi)的人數(shù);
(Ⅱ)若從面試成績在[80,100)內(nèi)的學(xué)生中任選兩人進(jìn)行隨機(jī)復(fù)查,求恰好有一人分?jǐn)?shù)在[90,100)內(nèi)的概率.
考點:古典概型及其概率計算公式,頻率分布直方圖,莖葉圖
專題:概率與統(tǒng)計
分析:(Ⅰ)由頻率分布直方圖可以看出,分?jǐn)?shù)在[90,100]內(nèi)同樣有2人.即可得到抽測的人數(shù)n,算出分?jǐn)?shù)在[80,90)之間的人數(shù).
(Ⅱ)由題意知本題是一個古典概型,試驗包含的所有事件可以通過列舉得到結(jié)果數(shù),看出滿足條件的事件數(shù),根據(jù)古典概型公式得到結(jié)果.
解答: 解析:(Ⅰ)面試分?jǐn)?shù)在[50,60)內(nèi)的頻數(shù)為2,由頻率分布直方圖可以看出,分?jǐn)?shù)在[90,100)內(nèi)同樣有2 人,
2
n
=10×0.01
,得n=20.
由莖葉圖可知面試成績的中位數(shù)為
74+76
2
=75

分?jǐn)?shù)在[80,90)內(nèi)的人數(shù)為20-(2+5+7+2)=4.
(Ⅱ)將[80,90)內(nèi)的四人編號為a,b,c,d,[90,100)內(nèi)的2人編號為A,B,
在[80,100)內(nèi)任選兩人的基本事件為:ac,ab,ad,bc,bd,aA,aB,bA,bB,cA,cB,dA,dB,AB,共15個,
其中恰好有一人分?jǐn)?shù)在[90,100)內(nèi)的基本事件為:aA,aB,bA,bB,cA,cB,dA,dB,共8個,
∴恰好有一人分?jǐn)?shù)在[90,100)內(nèi)的概率為
8
15
點評:這是一個統(tǒng)計綜合題,頻數(shù)、頻率和樣本容量三者之間的關(guān)系是知二求一,這種問題會出現(xiàn)在選擇和填空中,有的省份也會以大題的形式出現(xiàn),把它融于統(tǒng)計問題中.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
a
=(sin(α+
π
6
),1),
b
=(1,cosα-
3
),若
a
b
,則sin(α+
π
3
)等于(  )
A、1
B、-1
C、
3
D、-
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在直角坐標(biāo)系xOy中,曲線C1的點均在圓C2:x2+(y-5)2=9外,且對C1上任意一點M,M到直線y=-2的距離等于該點與圓C2上點的距離的最小值.
(Ⅰ)求曲線C1的方程;
(Ⅱ)設(shè)P為直線y=-4上的一點,過P作圓C2的兩條切線,分別與曲線C1相交于點A,B和C,D,證明:四點A,B,C,D的橫坐標(biāo)之積為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
ln(ex+a+1)
x
(a為常數(shù),是x∈(-∞,0)∪(0,+∞)上的偶函數(shù).
(Ⅰ)求實數(shù)a的值,
(Ⅱ)已知函數(shù)g(x)=
b
ln(ex+a+1)
-lnx,若g(x)≥5-3x恒成立,求實數(shù)b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}中,a1=3,a2=5,其前n項和Sn滿足Sn+Sn-2=2Sn-1+2n-1(n≥3).
(Ⅰ)求數(shù)列{an}的通項公式an;
(Ⅱ) 若bn=log2
256
a2n-1
)n∈N*,設(shè)數(shù)列{bn}的前n的和為Sn,當(dāng)n為何值時,Sn有最大值,并求最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系xOy中,已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的離心率為
6
3
.且過點(3,-1).
(1)求橢圓C的方徎;
(2)若動點P在直線l:x=-2
2
上,過P作直線交橢圓C于M,N兩點,使得PM=PN,再過P作直線l′⊥MN,直線l′是否恒過定點,若是,請求出該定點的坐標(biāo);若否,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{bn}的前n項和為Tn,且Tn-2bn+3=0,n∈N*
(Ⅰ)求數(shù)列{bn}的通項公式;
(Ⅱ)設(shè)Cn=
log2(
bn
3
),n為奇數(shù)
bn,n為偶數(shù)
,求數(shù)列{cn}的前2n+1項和P2n+1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)(1+2i)2=a+bi(a,b∈R),則ab=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

對于函數(shù)f(x)=xm(1-x)n(m∈N*,n∈N*),下列命題正確的有
 
.(寫出所有正確命題的序號)
①f(x)值域為R;
②對任意不全為奇數(shù)的m,n.函數(shù)f(x)的圖象與x軸相切;
③函數(shù)f(x)一定存在極值;
④存在m,n,使f(x)為奇函數(shù);
⑤當(dāng)x?[0,1]時,f(x)≤
1
4

查看答案和解析>>

同步練習(xí)冊答案