【題目】某農科所對冬季晝夜溫差大小與某反季節(jié)大豆新品種發(fā)芽多少之間的關系進行分析研究,他們分別記錄了12月1日至12月5日的每天晝夜溫差與實驗室每天每100顆種子中的發(fā)芽數(shù),得到如下資料:
日期 | 12月1日 | 12月2日 | 12月3日 | 12月4日 | 12月5日 |
溫差/攝氏度 | 10 | 11 | 13 | 12 | 8 |
發(fā)芽數(shù)/顆 | 23 | 25 | 30 | 26 | 16 |
該農科所確定的研究方案是:先從這5組數(shù)據中選取2組,用剩下的3組數(shù)據求線性回歸方程,再用被選取的2組數(shù)據進行檢驗.
(1)求選取的2組數(shù)據恰好是不相鄰2天的數(shù)據的概率;
(2)若選取的是12月1日與12月5日的2組數(shù)據,請根據12月2日至4日的數(shù)據,求出關于的線性回歸方程,由線性回歸方程得到的估計數(shù)據與所選取的檢驗數(shù)據的誤差均不超過2顆,則認為得到的線性回歸方程是可靠的,試問(2)中所得的線性回歸方程是否可靠?
附:參考公式:,.
【答案】(1);(2),是.
【解析】
(1)根據題意列舉出從5組數(shù)據中選取2組數(shù)據共有10種情況,每種情況都是可能出現(xiàn)的,滿足條件的事件包括的基本事件有6種.根據等可能事件的概率得出結果.
(2)根據所給的數(shù)據,求出x,y的平均數(shù),根據公式求出線性回歸方程的系數(shù),寫出線性回歸方程并進行預報.
(1)設抽到不相鄰兩組數(shù)據為事件,因為從5組數(shù)據中選取2組數(shù)據,若把當兩組數(shù)據出自12月1日和12月2 日時記為(1,2),則共有(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)共有10種情況,每種情況都是等可能出現(xiàn)的,其中抽到相鄰兩組數(shù)據的情況有4種,
所以.
(2)由數(shù)據,求得,.,,,,
所以,.
所以關于的線性回歸方程是,
當時,,;
同樣,當時,,;
所以,該研究所得到的線性回歸方程是可靠的.
科目:高中數(shù)學 來源: 題型:
【題目】某人做試驗,從一個裝有標號為1,2,3,4的小球的盒子中,無放回地取兩個小球,每次取一個,先取的小球的標號為,后取的小球的標號為,這樣構成有序實數(shù)對
(1)寫出這個試驗的所有結果;
(2)求“第一次取出的小球上的標號為”的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】隨著我國互聯(lián)網信息技術的發(fā)展,網絡購物已經成為許多人消費的一種重要方式,某市為了了解本市市民的網絡購物情況,特委托一家網絡公示進行了網絡問卷調查,并從參與調查的10000名網民中隨機抽取了200人進行抽樣分析,得到了下表所示數(shù)據:
經常進行網絡購物 | 偶爾或從不進行網絡購物 | 合計 | |
男性 | 50 | 50 | 100 |
女性 | 60 | 40 | 100 |
合計 | 110 | 90 | 200 |
(1)依據上述數(shù)據,能否在犯錯誤的概率不超過的前提下認為該市市民進行網絡購物的情況與性別有關?
(2)現(xiàn)從所抽取的女性網民中利用分層抽樣的方法再抽取人,從這人中隨機選出人贈送網絡優(yōu)惠券,求出選出的人中至少有兩人是經常進行網絡購物的概率;
(3)將頻率視為概率,從該市所有的參與調查的網民中隨機抽取人贈送禮物,記經常進行網絡購物的人數(shù)為,求的期望和方差.
附:,其中
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知數(shù)列與的前項和分別為與,對任意,.
(1)若,求;
(2)若對任意,都有.
①當時,求數(shù)列的前項和;
②是否存在兩個整數(shù),使成等差數(shù)列?若存在,求出的值,若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知動點到定點和到直線的距離之比為,設動點的軌跡為曲線,過點作垂直于軸的直線與曲線相交于兩點,直線與曲線交于兩點,與相交于一點(交點位于線段上,且與不重合).
(1)求曲線的方程;
(2)當直線與圓相切時,四邊形的面積是否有最大值?若有,求出其最大值及對應的直線的方程;若沒有,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】為了解甲、乙兩個快遞公司的工作狀況,假設同一個公司快遞員的工作狀況基本相同,現(xiàn)從甲、乙兩公司各隨機抽取一名快遞員,并從兩人某月(30天)的快遞件數(shù)記錄結果中隨機抽取10天的數(shù)據,制表如下:
每名快遞員完成一件貨物投遞可獲得的勞務費情況如下:
甲公司規(guī)定每件4.5元;乙公司規(guī)定每天35件以內(含35件)的部分每件4元,超出35件的部分每件7元.
(1)根據表中數(shù)據寫出甲公司員工在這10天投遞的快遞件數(shù)的平均數(shù)和眾數(shù);
(2)為了解乙公司員工的每天所得勞務費的情況,從這10天中隨機抽取1天,他所得的勞務費記為(單位:元),求的概率;
(3)根據表中數(shù)據估算公司的每位員工在該月所得的勞務費.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù),其中為自然對數(shù)的底數(shù),.
(1)討論函數(shù)的單調性,并寫出相應的單調區(qū)間;
(2)已知,,若對任意都成立,求的最大值;
(3)設,若存在,使得成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設函數(shù)f(x)在R上存在導數(shù)f′(x),對任意的x∈R,有f(x)+f(-x)=x2,且x∈(0,+∞)時,f′(x)<x.若f(1-a)-f(a)≥-a,則實數(shù)a的取值范圍是______.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com